806 resultados para Neural coding


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is supported by Brazilian agencies Fapesp, CAPES and CNPq

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sound localization relies on the neural processing of monaural and binaural spatial cues that arise from the way sounds interact with the head and external ears. Neurophysiological studies of animals raised with abnormal sensory inputs show that the map of auditory space in the superior colliculus is shaped during development by both auditory and visual experience. An example of this plasticity is provided by monaural occlusion during infancy, which leads to compensatory changes in auditory spatial tuning that tend to preserve the alignment between the neural representations of visual and auditory space. Adaptive changes also take place in sound localization behavior, as demonstrated by the fact that ferrets raised and tested with one ear plugged learn to localize as accurately as control animals. In both cases, these adjustments may involve greater use of monaural spectral cues provided by the other ear. Although plasticity in the auditory space map seems to be restricted to development, adult ferrets show some recovery of sound localization behavior after long-term monaural occlusion. The capacity for behavioral adaptation is, however, task dependent, because auditory spatial acuity and binaural unmasking (a measure of the spatial contribution to the “cocktail party effect”) are permanently impaired by chronically plugging one ear, both in infancy but especially in adulthood. Experience-induced plasticity allows the neural circuitry underlying sound localization to be customized to individual characteristics, such as the size and shape of the head and ears, and to compensate for natural conductive hearing losses, including those associated with middle ear disease in infancy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Time scale parametric spike train distances like the Victor and the van Rossum distancesare often applied to study the neural code based on neural stimuli discrimination.Different neural coding hypotheses, such as rate or coincidence coding,can be assessed by combining a time scale parametric spike train distance with aclassifier in order to obtain the optimal discrimination performance. The time scalefor which the responses to different stimuli are distinguished best is assumed to bethe discriminative precision of the neural code. The relevance of temporal codingis evaluated by comparing the optimal discrimination performance with the oneachieved when assuming a rate code.We here characterize the measures quantifying the discrimination performance,the discriminative precision, and the relevance of temporal coding. Furthermore,we evaluate the information these quantities provide about the neural code. Weshow that the discriminative precision is too unspecific to be interpreted in termsof the time scales relevant for encoding. Accordingly, the time scale parametricnature of the distances is mainly an advantage because it allows maximizing thediscrimination performance across a whole set of measures with different sensitivitiesdetermined by the time scale parameter, but not due to the possibility toexamine the temporal properties of the neural code.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Deciphering the information that eyes, ears, and other sensory organs transmit to the brain is important for understanding the neural basis of behavior. Recordings from single sensory nerve cells have yielded useful insights, but single neurons generally do not mediate behavior; networks of neurons do. Monitoring the activity of all cells in a neural network of a behaving animal, however, is not yet possible. Taking an alternative approach, we used a realistic cell-based model to compute the ensemble of neural activity generated by one sensory organ, the lateral eye of the horseshoe crab, Limulus polyphemus. We studied how the neural network of this eye encodes natural scenes by presenting to the model movies recorded with a video camera mounted above the eye of an animal that was exploring its underwater habitat. Model predictions were confirmed by simultaneously recording responses from single optic nerve fibers of the same animal. We report here that the eye transmits to the brain robust “neural images” of objects having the size, contrast, and motion of potential mates. The neural code for such objects is not found in ambiguous messages of individual optic nerve fibers but rather in patterns of coherent activity that extend over small ensembles of nerve fibers and are bound together by stimulus motion. Integrative properties of neurons in the first synaptic layer of the brain appear well suited to detecting the patterns of coherent activity. Neural coding by this relatively simple eye helps explain how horseshoe crabs find mates and may lead to a better understanding of how more complex sensory organs process information.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Computational neuroscience has contributed significantly to our understanding of higher brain function by combining experimental neurobiology, psychophysics, modeling, and mathematical analysis. This article reviews recent advances in a key area: neural coding and information processing. It is shown that synapses are capable of supporting computations based on highly structured temporal codes. Such codes could provide a substrate for unambiguous representations of complex stimuli and be used to solve difficult cognitive tasks, such as the binding problem. Unsupervised learning rules could generate the circuitry required for precise temporal codes. Together, these results indicate that neural systems perform a rich repertoire of computations based on action potential timing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Os recentes avanços técnicos das duas últimas décadas para o registro de sinais neuroeletrofisiológicos foram essenciais para que se testassem hipóteses há muito propostas acerca de como células nervosas processam e armazenam informação. No entanto, ao permitir maior detalhamento dos dados coletados, as novas tecnologias levam inevitavelmente ao aumento de sua complexidade estatística e, consequentemente, à necessidade de novas ferramentas matemático-computacionais para sua análise. Nesta tese, apresentamos novos métodos para a análise de dois componentes fundamentais nas atuais teorias da codificação neural: (1) assembleias celulares, definidas pela co-ativação de subgrupos neuronais; e (2) o padrão temporal de atividade de neurônios individuais. Em relação a (1), desenvolvemos um método baseado em análise de componentes independentes para identificar e rastrear padrões de co-ativação significativos com alta resolução temporal. Superamos limitações de métodos anteriores, ao efetivamente isolar assembleias e abrir a possibilidade de analisar simultaneamente grandes populações neuronais. Em relação a (2), apresentamos uma nova técnica para a extração de padrões de atividade em trens de disparo baseada na decomposição wavelet. Demonstramos, por meio de simulações e de aplicação a dados reais, que nossa ferramenta supera as mais utilizadas atualmente para decodificar respostas de neurônios e estimar a informação de Shannon entre trens de disparos e estímulos externos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article is a transcription of an electronic symposium in which active researchers were invited by the Brazilian Society of Neuroscience and Behavior (SBNeC) to discuss the advances of the last decade in the neurobiology of emotion. Four basic questions were debated: 1) What are the most critical issues/questions in the neurobiology of emotion? 2) What do we know for certain about brain processes involved in emotion and what is controversial? 3) What kinds of research are needed to resolve these controversial issues? 4) What is the relationship between learning, memory and emotion? The focus was on the existence of different neural systems for different emotions and the nature of the neural coding for the emotional states. Is emotion the result of the interaction of different brain regions such as the amygdala, the nucleus accumbens, or the periaqueductal gray matter or is it an emergent property of the whole brain neural network? The relationship between unlearned and learned emotions was also discussed. Are the circuits of the former the underpinnings of the latter? It was pointed out that much of what we know about emotions refers to aversively motivated behaviors, like fear and anxiety. Appetitive emotions should attract much interest in the future. The learning and memory relationship with emotions was also discussed in terms of conditioned and unconditioned stimuli, innate and learned fear, contextual cues inducing emotional states, implicit memory and the property of using this term for animal memories. In a general way it could be said that learning modifies the neural circuits through which emotional responses are expressed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the most pervading concepts underlying computational models of information processing in the brain is linear input integration of rate coded uni-variate information by neurons. After a suitable learning process this results in neuronal structures that statically represent knowledge as a vector of real valued synaptic weights. Although this general framework has contributed to the many successes of connectionism, in this paper we argue that for all but the most basic of cognitive processes, a more complex, multi-variate dynamic neural coding mechanism is required - knowledge should not be spacially bound to a particular neuron or group of neurons. We conclude the paper with discussion of a simple experiment that illustrates dynamic knowledge representation in a spiking neuron connectionist system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

What is the role of selective attention in visual perception? Before answering this question, it is necessary to differentiate between attentional mechanisms that influence the identification of a stimulus from those that operate after perception is complete. Cognitive neuroscience techniques are particularly well suited to making this distinction because they allow different attentional mechanisms to be isolated in terms of timing and/or neuroanatomy. The present article describes the use of these techniques in differentiating between perceptual and postperceptual attentional mechanisms and then proposes a specific role of attention in visual perception. Specifically, attention is proposed to resolve ambiguities in neural coding that arise when multiple objects are processed simultaneously. Evidence for this hypothesis is provided by two experiments showing that attention—as measured electrophysiologically—is allocated to visual search targets only under conditions that would be expected to lead to ambiguous neural coding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The orientations of lines and edges are important in defining the structure of the visual environment, and observers can detect differences in line orientation within the first few hundred milliseconds of scene viewing. The present work is a psychophysical investigation of the mechanisms of early visual orientation-processing. In experiments with briefly presented displays of line elements, observers indicated whether all the elements were uniformly oriented or whether a uniquely oriented target was present among uniformly oriented nontargets. The minimum difference between nontarget and target orientations that was required for effective target-detection (the orientation increment threshold) varied little with the number of elements and their spatial density, but the percentage of correct responses in detection of a large orientation-difference increased with increasing element density. The differing variations with element density of thresholds and percent-correct scores may indicate the operation of more than one mechanism in early visual orientation-processIng. Reducing element length caused threshold to increase with increasing number of elements, showing that the effectiveness of rapid, spatially parallel orientation-processing depends on element length. Orientational anisotropy in line-target detection has been reported previously: a coarse periodic variation and some finer variations in orientation increment threshold with nontarget orientation have been found. In the present work, the prominence of the coarse variation in relation to finer variations decreased with increasing effective viewing duration, as if the operation of coarse orientation-processing mechanisms precedes the operation of finer ones. Orientational anisotropy was prominent even when observers lay horizontally and viewed displays by looking upwards through a black cylinder that excluded all possible visual references for orientation. So, gravitational and visual cues are not essential to the definition of an orientational reference frame for early vision, and such a reference can be well defined by retinocentric neural coding, awareness of body-axis orientation, or both.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Theories of sparse signal representation, wherein a signal is decomposed as the sum of a small number of constituent elements, play increasing roles in both mathematical signal processing and neuroscience. This happens despite the differences between signal models in the two domains. After reviewing preliminary material on sparse signal models, I use work on compressed sensing for the electron tomography of biological structures as a target for exploring the efficacy of sparse signal reconstruction in a challenging application domain. My research in this area addresses a topic of keen interest to the biological microscopy community, and has resulted in the development of tomographic reconstruction software which is competitive with the state of the art in its field. Moving from the linear signal domain into the nonlinear dynamics of neural encoding, I explain the sparse coding hypothesis in neuroscience and its relationship with olfaction in locusts. I implement a numerical ODE model of the activity of neural populations responsible for sparse odor coding in locusts as part of a project involving offset spiking in the Kenyon cells. I also explain the validation procedures we have devised to help assess the model's similarity to the biology. The thesis concludes with the development of a new, simplified model of locust olfactory network activity, which seeks with some success to explain statistical properties of the sparse coding processes carried out in the network.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High performance video codec is mandatory for multimedia applications such as video-on-demand and video conferencing. Recent research has proposed numerous video coding techniques to meet the requirement in bandwidth, delay, loss and Quality-of-Service (QoS). In this paper, we present our investigations on inter-subband self-similarity within the wavelet-decomposed video frames using neural networks, and study the performance of applying the spatial network model to all video frames over time. The goal of our proposed method is to restore the highest perceptual quality for video transmitted over a highly congested network. Our contributions in this paper are: (1) A new coding model with neural network based, inter-subband redundancy (ISR) prediction for video coding using wavelet (2) The performance of 1D and 2D ISR prediction, including multiple levels of wavelet decompositions. Our result shows a short-term quality enhancement may be obtained using both 1D and 2D ISR prediction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article, we analyze the ability of the early olfactory system to detect and discriminate different odors by means of information theory measurements applied to olfactory bulb activity images. We have studied the role that the diversity and number of receptor neuron types play in encoding chemical information. Our results show that the olfactory receptors of the biological system are low correlated and present good coverage of the input space. The coding capacity of ensembles of olfactory receptors with the same receptive range is maximized when the receptors cover half of the odor input space - a configuration that corresponds to receptors that are not particularly selective. However, the ensemble's performance slightly increases when mixing uncorrelated receptors of different receptive ranges. Our results confirm that the low correlation between sensors could be more significant than the sensor selectivity for general purpose chemo-sensory systems, whether these are biological or biomimetic.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The sigmoidal tuning curve that maximizes the mutual information for a Poisson neuron, or population of Poisson neurons, is obtained. The optimal tuning curve is found to have a discrete structure that results in a quantization of the input signal. The number of quantization levels undergoes a hierarchy of phase transitions as the length of the coding window is varied. We postulate, using the mammalian auditory system as an example, that the presence of a subpopulation structure within a neural population is consistent with an optimal neural code.