998 resultados para Neural classi
Sistema inteligente para detecção de manchas de óleo na superfície marinha através de imagens de SAR
Resumo:
Oil spill on the sea, accidental or not, generates enormous negative consequences for the affected area. The damages are ambient and economic, mainly with the proximity of these spots of preservation areas and/or coastal zones. The development of automatic techniques for identification of oil spots on the sea surface, captured through Radar images, assist in a complete monitoring of the oceans and seas. However spots of different origins can be visualized in this type of imaging, which is a very difficult task. The system proposed in this work, based on techniques of digital image processing and artificial neural network, has the objective to identify the analyzed spot and to discern between oil and other generating phenomena of spot. Tests in functional blocks that compose the proposed system allow the implementation of different algorithms, as well as its detailed and prompt analysis. The algorithms of digital image processing (speckle filtering and gradient), as well as classifier algorithms (Multilayer Perceptron, Radial Basis Function, Support Vector Machine and Committe Machine) are presented and commented.The final performance of the system, with different kind of classifiers, is presented by ROC curve. The true positive rates are considered agreed with the literature about oil slick detection through SAR images presents
Resumo:
Communication signal processing applications often involve complex-valued (CV) functional representations for signals and systems. CV artificial neural networks have been studied theoretically and applied widely in nonlinear signal and data processing [1–11]. Note that most artificial neural networks cannot be automatically extended from the real-valued (RV) domain to the CV domain because the resulting model would in general violate Cauchy-Riemann conditions, and this means that the training algorithms become unusable. A number of analytic functions were introduced for the fully CV multilayer perceptrons (MLP) [4]. A fully CV radial basis function (RBF) nework was introduced in [8] for regression and classification applications. Alternatively, the problem can be avoided by using two RV artificial neural networks, one processing the real part and the other processing the imaginary part of the CV signal/system. A even more challenging problem is the inverse of a CV
Resumo:
The use of multi-agent systems for classification tasks has been proposed in order to overcome some drawbacks of multi-classifier systems and, as a consequence, to improve performance of such systems. As a result, the NeurAge system was proposed. This system is composed by several neural agents which communicate and negotiate a common result for the testing patterns. In the NeurAge system, a negotiation method is very important to the overall performance of the system since the agents need to reach and agreement about a problem when there is a conflict among the agents. This thesis presents an extensive analysis of the NeurAge System where it is used all kind of classifiers. This systems is now named ClassAge System. It is aimed to analyze the reaction of this system to some modifications in its topology and configuration
Resumo:
AMS Subj. Classification: 62P10, 62H30, 68T01