871 resultados para Neural Basis Of Behaviour


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using fMRI, we examined the neural correlates of maternal responsiveness. Ten healthy mothers viewed alternating blocks of video: (i) 40 s of their own infant; (ii) 20 s of a neutral video; (iii) 40 s of an unknown infant and (iv) 20 s of neutral video, repeated 4 times. Predominant BOLD signal change to the contrast of infants minus neutral stimulus occurred in bilateral visual processing regions BA minus neutral stimulus occurred in bilateral visual processing regions (BA 38), left amygdala and visual cortex (BA 19), and to the unknown infant minus own infant contrast in bilateral orbitofrontal cortex (BA 10,47) and medial prefrontal cortex (BA 8). These findings suggest that amygdala and temporal pole may be key sites in mediating a mother's response to her infant and reaffirms their importance in face emotion processing and social behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The naming impairments in Alzheimer's disease (AD) have been attributed to a variety of cognitive processing deficits, including impairments in semantic memory, visual perception, and lexical access. To further understand the underlying biological basis of the naming failures in AD, the present investigation examined the relationship of various classes of naming errors to regional brain measures of cerebral glucose metabolism as measured with 18 F-Fluoro-2-deoxyglucose (FDG) and positron emission tomography (PET). Errors committed on a visual naming test were categorized according to a cognitive processing schema and then examined in relationship to metabolism within specific brain regions. The results revealed an association of semantic errors with glucose metabolism in the frontal and temporal regions. Language access errors, such as circumlocutions, and word blocking nonresponses were associated with decreased metabolism in areas within the left hemisphere. Visuoperceptive errors were related to right inferior parietal metabolic function. The findings suggest that specific brain areas mediate the perceptual, semantic, and lexical processing demands of visual naming and that visual naming problems in dementia are related to dysfunction in specific neural circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using fMRI, we conducted two types of property generation task that involved language switching, with early bilingual speakers of Korean and Chinese. The first is a more conventional task in which a single language (L1 or L2) was used within each trial, but switched randomly from trial to trial. The other consists of a novel experimental design where language switching happens within each trial, alternating in the direction of the L1/L2 translation required. Our findings support a recently introduced cognitive model, the 'hodological' view of language switching proposed by Moritz-Gasser and Duffau. The nodes of a distributed neural network that this model proposes are consistent with the informative regions that we extracted in this study, using both GLM methods and Multivariate Pattern Analyses: the supplementary motor area, caudate, supramarginal gyrus and fusiform gyrus and other cortical areas. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contrary to the widespread belief that people are positively motivated by reward incentives, some studies have shown that performance-based extrinsic reward can actually undermine a person's intrinsic motivation to engage in a task. This “undermining effect” has timely practical implications, given the burgeoning of performance-based incentive systems in contemporary society. It also presents a theoretical challenge for economic and reinforcement learning theories, which tend to assume that monetary incentives monotonically increase motivation. Despite the practical and theoretical importance of this provocative phenomenon, however, little is known about its neural basis. Herein we induced the behavioral undermining effect using a newly developed task, and we tracked its neural correlates using functional MRI. Our results show that performance-based monetary reward indeed undermines intrinsic motivation, as assessed by the number of voluntary engagements in the task. We found that activity in the anterior striatum and the prefrontal areas decreased along with this behavioral undermining effect. These findings suggest that the corticobasal ganglia valuation system underlies the undermining effect through the integration of extrinsic reward value and intrinsic task value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anticipation is an emerging concept that can provide a bridge between the deepest philosophical theories about the nature of life and cognition on one hand and the empirical biological sciences steeped in reductionist and Newtonian conception of causality. Three conceptions of anticipation have been emerging from the literature that may be operationalised in a way leading to a viable empirical programme. The discussion of the research into a novel dynamical concept of anticipating synchronisation lends credence to such a possibility and suggests further links between the three anticipation paradigms. A careful progress mindful to the deep philosophical concerns but also respecting empirical evidence will ultimately lead towards unifying theoretical and empirical biological sciences and may offer progress where reductionist science have been so far faltering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hallucinogenic brew Ayahuasca, a rich source of serotonergic agonists and reuptake inhibitors, has been used for ages by Amazonian populations during religious ceremonies. Among all perceptual changes induced by Ayahuasca, the most remarkable are vivid seeings. During such seeings, users report potent imagery. Using functional magnetic resonance imaging during a closed-eyes imagery task, we found that Ayahuasca produces a robust increase in the activation of several occipital, temporal, and frontal areas. In the primary visual area, the effect was comparable in magnitude to the activation levels of natural image with the eyes open. Importantly, this effect was specifically correlated with the occurrence of individual perceptual changes measured by psychiatric scales. The activity of cortical areas BA30 and BA37, known to be involved with episodic memory and the processing of contextual associations, was also potentiated by Ayahuasca intake during imagery. Finally, we detected a positive modulation by Ayahuasca of BA 10, a frontal area involved with intentional prospective imagination, working memory and the processing of information from internal sources. Therefore, our results indicate that Ayahuasca seeings stem from the activation of an extensive network generally involved with vision, memory, and intention. By boosting the intensity of recalled images to the same level of natural image, Ayahuasca lends a status of reality to inner experiences. It is therefore understandable why Ayahuasca was culturally selected over many centuries by rain forest shamans to facilitate mystical revelations of visual nature. Hum Brain Mapp, 2012. (c) 2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of integrating into a unified percept sensory inputs deriving from different sensory modalities, but related to the same external event, is called multisensory integration and might represent an efficient mechanism of sensory compensation when a sensory modality is damaged by a cortical lesion. This hypothesis has been discussed in the present dissertation. Experiment 1 explored the role of superior colliculus (SC) in multisensory integration, testing patients with collicular lesions, patients with subcortical lesions not involving the SC and healthy control subjects in a multisensory task. The results revealed that patients with collicular lesions, paralleling the evidence of animal studies, demonstrated a loss of multisensory enhancement, in contrast with control subjects, providing the first lesional evidence in humans of the essential role of SC in mediating audio-visual integration. Experiment 2 investigated the role of cortex in mediating multisensory integrative effects, inducing virtual lesions by inhibitory theta-burst stimulation on temporo-parietal cortex, occipital cortex and posterior parietal cortex, demonstrating that only temporo-parietal cortex was causally involved in modulating the integration of audio-visual stimuli at the same spatial location. Given the involvement of the retino-colliculo-extrastriate pathway in mediating audio-visual integration, the functional sparing of this circuit in hemianopic patients is extremely relevant in the perspective of a multisensory-based approach to the recovery of unisensory defects. Experiment 3 demonstrated the spared functional activity of this circuit in a group of hemianopic patients, revealing the presence of implicit recognition of the fearful content of unseen visual stimuli (i.e. affective blindsight), an ability mediated by the retino-colliculo-extrastriate pathway and its connections with amygdala. Finally, Experiment 4 provided evidence that a systematic audio-visual stimulation is effective in inducing long-lasting clinical improvements in patients with visual field defect and revealed that the activity of the spared retino-colliculo-extrastriate pathway is responsible of the observed clinical amelioration, as suggested by the greater improvement observed in patients with cortical lesions limited to the occipital cortex, compared to patients with lesions extending to other cortical areas, found in tasks high demanding in terms of spatial orienting. Overall, the present results indicated that multisensory integration is mediated by the retino-colliculo-extrastriate pathway and that a systematic audio-visual stimulation, activating this spared neural circuit, is able to affect orientation towards the blind field in hemianopic patients and, therefore, might constitute an effective and innovative approach for the rehabilitation of unisensory visual impairments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studying individual differences in conscious awareness can potentially lend fundamental insights into the neural bases of binding mechanisms and consciousness (Cohen Kadosh and Henik, 2007). Partly for this reason, considerable attention has been devoted to the neural mechanisms underlying grapheme–color synesthesia, a healthy condition involving atypical brain activation and the concurrent experience of color photisms in response to letters, numbers, and words. For instance, the letter C printed in black on a white background may elicit a yellow color photism that is perceived to be spatially colocalized with the inducing stimulus or internally in the “mind's eye” as, for instance, a visual image. Synesthetic experiences are involuntary, idiosyncratic, and consistent over time (Rouw et al., 2011). To date, neuroimaging research on synesthesia has focused on brain areas activated during the experience of synesthesia and associated structural brain differences. However, activity patterns of the synesthetic brain at rest remain largely unexplored. Moreover, the neural correlates of synesthetic consistency, the hallmark characteristic of synesthesia, remain elusive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The perceived speed of motion in one part of the visual field is influenced by the speed of motion in its surrounding fields. Little is known about the cellular mechanisms causing this phenomenon. Recordings from mammalian visual cortex revealed that speed preference of the cortical cells could be changed by displaying a contrast speed in the field surrounding the cell’s classical receptive field. The neuron’s selectivity shifted to prefer faster speed if the contextual surround motion was set at a relatively lower speed, and vice versa. These specific center–surround interactions may underlie the perceptual enhancement of speed contrast between adjacent fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigation of the three-generation KE family, half of whose members are affected by a pronounced verbal dyspraxia, has led to identification of their core deficit as one involving sequential articulation and orofacial praxis. A positron emission tomography activation study revealed functional abnormalities in both cortical and subcortical motor-related areas of the frontal lobe, while quantitative analyses of magnetic resonance imaging scans revealed structural abnormalities in several of these same areas, particularly the caudate nucleus, which was found to be abnormally small bilaterally. A recent linkage study [Fisher, S., Vargha-Khadem, F., Watkins, K. E., Monaco, A. P. & Pembry, M. E. (1998) Nat. Genet. 18, 168–170] localized the abnormal gene (SPCH1) to a 5.6-centiMorgan interval in the chromosomal band 7q31. The genetic mutation or deletion in this region has resulted in the abnormal development of several brain areas that appear to be critical for both orofacial movements and sequential articulation, leading to marked disruption of speech and expressive language.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the performance of young and senior subjects on a well known working memory task, the Operation Span. This is a dual-task in which subjects perform a memory task while simultaneously verifying simple equations. Positron-emission tomography scans were taken during performance. Both young and senior subjects demonstrated a cost in accuracy and latency in the Operation Span compared with performing each component task alone (math verification or memory only). Senior subjects were disproportionately impaired relative to young subjects on the dual-task. When brain activation was examined for senior subjects, we found regions in prefrontal cortex that were active in the dual-task, but not in the component tasks. Similar results were obtained for young subjects who performed relatively poorly on the dual-task; however, for young subjects who performed relatively well in the dual-task, we found no prefrontal regions that were active only in the dual-task. Results are discussed as they relate to the executive component of task switching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three studies investigated the relation between symbolic gestures and words, aiming at discover the neural basis and behavioural features of the lexical semantic processing and integration of the two communicative signals. The first study aimed at determining whether elaboration of communicative signals (symbolic gestures and words) is always accompanied by integration with each other and, if present, this integration can be considered in support of the existence of a same control mechanism. Experiment 1 aimed at determining whether and how gesture is integrated with word. Participants were administered with a semantic priming paradigm with a lexical decision task and pronounced a target word, which was preceded by a meaningful or meaningless prime gesture. When meaningful, the gesture could be either congruent or incongruent with word meaning. Duration of prime presentation (100, 250, 400 ms) randomly varied. Voice spectra, lip kinematics, and time to response were recorded and analyzed. Formant 1 of voice spectra, and mean velocity in lip kinematics increased when the prime was meaningful and congruent with the word, as compared to meaningless gesture. In other words, parameters of voice and movement were magnified by congruence, but this occurred only when prime duration was 250 ms. Time to response to meaningful gesture was shorter in the condition of congruence compared to incongruence. Experiment 2 aimed at determining whether the mechanism of integration of a prime word with a target word is similar to that of a prime gesture with a target word. Formant 1 of the target word increased when word prime was meaningful and congruent, as compared to meaningless congruent prime. Increase was, however, present for whatever prime word duration. In the second study, experiment 3 aimed at determining whether symbolic prime gesture comprehension makes use of motor simulation. Transcranial Magnetic Stimulation was delivered to left primary motor cortex 100, 250, 500 ms after prime gesture presentation. Motor Evoked Potential of First Dorsal Interosseus increased when stimulation occurred 100 ms post-stimulus. Thus, gesture was understood within 100ms and integrated with the target word within 250 ms. Experiment 4 excluded any hand motor simulation in order to comprehend prime word. The effect of the prior presentation of a symbolic gesture on congruent target word processing was investigated in study 3. In experiment 5, symbolic gestures were presented as primes, followed by semantically congruent target word or pseudowords. In this case, lexical-semantic decision was accompanied by a motor simulation at 100ms after the onset of the verbal stimuli. Summing up, the same type of integration with a word was present for both prime gesture and word. It was probably subsequent to understanding of the signal, which used motor simulation for gesture and direct access to semantics for words. However, gesture and words could be understood at the same motor level through simulation if words were preceded by an adequate gestural context. Results are discussed in the prospective of a continuum between transitive actions and emblems, in parallelism with language; the grounded/symbolic content of the different signals evidences relation between sensorimotor and linguistic systems, which could interact at different levels.