999 resultados para Networked manufacturing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective and efficient implementation of intelligent and/or recently emerged networked manufacturing systems require an enterprise level integration. The networked manufacturing offers several advantages in the current competitive atmosphere by way to reduce, by shortening manufacturing cycle time and maintaining the production flexibility thereby achieving several feasible process plans. The first step in this direction is to integrate manufacturing functions such as process planning and scheduling for multi-jobs in a network based manufacturing system. It is difficult to determine a proper plan that meets conflicting objectives simultaneously. This paper describes a mobile-agent based negotiation approach to integrate manufacturing functions in a distributed manner; and its fundamental framework and functions are presented. Moreover, ontology has been constructed by using the Protégé software which possesses the flexibility to convert knowledge into Extensible Markup Language (XML) schema of Web Ontology Language (OWL) documents. The generated XML schemas have been used to transfer information throughout the manufacturing network for the intelligent interoperable integration of product data models and manufacturing resources. To validate the feasibility of the proposed approach, an illustrative example along with varied production environments that includes production demand fluctuations is presented and compared the proposed approach performance and its effectiveness with evolutionary algorithm based Hybrid Dynamic-DNA (HD-DNA) algorithm. The results show that the proposed scheme is very effective and reasonably acceptable for integration of manufacturing functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wireless communication technologies have become widely adopted, appearing in heterogeneous applications ranging from tracking victims, responders and equipments in disaster scenarios to machine health monitoring in networked manufacturing systems. Very often, applications demand a strictly bounded timing response, which, in distributed systems, is generally highly dependent on the performance of the underlying communication technology. These systems are said to have real-time timeliness requirements since data communication must be conducted within predefined temporal bounds, whose unfulfillment may compromise the correct behavior of the system and cause economic losses or endanger human lives. The potential adoption of wireless technologies for an increasingly broad range of application scenarios has made the operational requirements more complex and heterogeneous than before for wired technologies. On par with this trend, there is an increasing demand for the provision of cost-effective distributed systems with improved deployment, maintenance and adaptation features. These systems tend to require operational flexibility, which can only be ensured if the underlying communication technology provides both time and event triggered data transmission services while supporting on-line, on-the-fly parameter modification. Generally, wireless enabled applications have deployment requirements that can only be addressed through the use of batteries and/or energy harvesting mechanisms for power supply. These applications usually have stringent autonomy requirements and demand a small form factor, which hinders the use of large batteries. As the communication support may represent a significant part of the energy requirements of a station, the use of power-hungry technologies is not adequate. Hence, in such applications, low-range technologies have been widely adopted. In fact, although low range technologies provide smaller data rates, they spend just a fraction of the energy of their higher-power counterparts. The timeliness requirements of data communications, in general, can be met by ensuring the availability of the medium for any station initiating a transmission. In controlled (close) environments this can be guaranteed, as there is a strict regulation of which stations are installed in the area and for which purpose. Nevertheless, in open environments, this is hard to control because no a priori abstract knowledge is available of which stations and technologies may contend for the medium at any given instant. Hence, the support of wireless real-time communications in unmanaged scenarios is a highly challenging task. Wireless low-power technologies have been the focus of a large research effort, for example, in the Wireless Sensor Network domain. Although bringing extended autonomy to battery powered stations, such technologies are known to be negatively influenced by similar technologies contending for the medium and, especially, by technologies using higher power transmissions over the same frequency bands. A frequency band that is becoming increasingly crowded with competing technologies is the 2.4 GHz Industrial, Scientific and Medical band, encompassing, for example, Bluetooth and ZigBee, two lowpower communication standards which are the base of several real-time protocols. Although these technologies employ mechanisms to improve their coexistence, they are still vulnerable to transmissions from uncoordinated stations with similar technologies or to higher power technologies such as Wi- Fi, which hinders the support of wireless dependable real-time communications in open environments. The Wireless Flexible Time-Triggered Protocol (WFTT) is a master/multi-slave protocol that builds on the flexibility and timeliness provided by the FTT paradigm and on the deterministic medium capture and maintenance provided by the bandjacking technique. This dissertation presents the WFTT protocol and argues that it allows supporting wireless real-time communication services with high dependability requirements in open environments where multiple contention-based technologies may dispute the medium access. Besides, it claims that it is feasible to provide flexible and timely wireless communications at the same time in open environments. The WFTT protocol was inspired on the FTT paradigm, from which higher layer services such as, for example, admission control has been ported. After realizing that bandjacking was an effective technique to ensure the medium access and maintenance in open environments crowded with contention-based communication technologies, it was recognized that the mechanism could be used to devise a wireless medium access protocol that could bring the features offered by the FTT paradigm to the wireless domain. The performance of the WFTT protocol is reported in this dissertation with a description of the implemented devices, the test-bed and a discussion of the obtained results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Part 18: Optimization in Collaborative Networks

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless networked control systems (WNCSs) have been widely used in the areas of manufacturing and industrial processing over the last few years. They provide real-time control with a unique characteristic: periodic traffic. These systems have a time-critical requirement. Due to current wireless mechanisms, the WNCS performance suffers from long time-varying delays, packet dropout, and inefficient channel utilization. Current wirelessly networked applications like WNCSs are designed upon the layered architecture basis. The features of this layered architecture constrain the performance of these demanding applications. Numerous efforts have attempted to use cross-layer design (CLD) approaches to improve the performance of various networked applications. However, the existing research rarely considers large-scale networks and congestion network conditions in WNCSs. In addition, there is a lack of discussions on how to apply CLD approaches in WNCSs. This thesis proposes a cross-layer design methodology to address the issues of periodic traffic timeliness, as well as to promote the efficiency of channel utilization in WNCSs. The design of the proposed CLD is highlighted by the measurement of the underlying network condition, the classification of the network state, and the adjustment of sampling period between sensors and controllers. This period adjustment is able to maintain the minimally allowable sampling period, and also maximize the control performance. Extensive simulations are conducted using the network simulator NS-2 to evaluate the performance of the proposed CLD. The comparative studies involve two aspects of communications, with and without using the proposed CLD, respectively. The results show that the proposed CLD is capable of fulfilling the timeliness requirement under congested network conditions, and is also able to improve the channel utilization efficiency and the proportion of effective data in WNCSs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to uniquely identify individual objects is essential in many applications such as manufacturing, distribution logistics, access control, anti-counterfeiting and healthcare. Radio Frequency Identification (RFID) technology provides one solution for automatic identification of entities using radio waves. Although there is considerable potential in deploying RFID technology, reliability is a key challenge that requires careful attention for RFID to deliver its inherent benefits. In this paper, we highlight the reliability challenges in RFID technology and we analyze the reliability aspects of RFID technology and their major causes. We will also discuss techniques to improve the reliability of RFID systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anyone who looks at the title of this special issue will agree that the intent behind the preparation of this volume was ambitious: to predict and discuss “The Future of Manufacturing”. Will manufacturing be important in the future? Even though some sceptics might say not, and put on the table some old familiar arguments, we would strongly disagree. To bring subsidies for the argument we issued the call-for-papers for this special issue of Journal of Manufacturing Technology Management, fully aware of the size of the challenge in our hands. But we strongly believed that the enterprise would be worthwhile. The point of departure is the ongoing debate concerning the meaning and content of manufacturing. The easily visualised internal activity of using tangible resources to make physical products in factories is no longer a viable way to characterise manufacturing. It is now a more loosely defined concept concerning the organisation and management of open, interdependent, systems for delivering goods and services, tangible and intangible, to diverse types of markets. Interestingly, Wickham Skinner is the most cited author in this special issue of JMTM. He provides the departure point of several articles because his vision and insights have guided and inspired researchers in production and operations management from the late 1960s until today. However, the picture that we draw after looking at the contributions in this special issue is intrinsically distinct, much more dynamic, and complex. Seven articles address the following research themes: 1.new patterns of organisation, where the boundaries of firms become blurred and the role of the firm in the production system as well as that of manufacturing within the firm become contingent; 2.new approaches to strategic decision-making in markets characterised by turbulence and weak signals at the customer interface; 3.new challenges in strategic and operational decisions due to changes in the profile of the workforce; 4.new global players, especially China, modifying the manufacturing landscape; and 5.new techniques, methods and tools that are being made feasible through progress in new technological domains. Of course, many other important dimensions could be studied, but these themes are representative of current changes and future challenges. Three articles look at the first theme: organisational evolution of production and operations in firms and networks. Karlsson's and Skold's article represent one further step in their efforts to characterise “the extraprise”. In the article, they advance the construction of a new framework, based on “the network perspective” by defining the formal elements which compose it and exploring the meaning of different types of relationships. The way in which “actors, resources and activities” are conceptualised extends the existing boundaries of analytical thinking in operations management and open new avenues for research, teaching and practice. The higher level of abstraction, an intrinsic feature of the framework, is associated to the increasing degree of complexity that characterises decisions related to strategy and implementation in the manufacturing and operations area, a feature that is expected to become more and more pervasive as time proceeds. Riis, Johansen, Englyst and Sorensen have also based their article on their previous work, which in this case is on “the interactive firm”. They advance new propositions on strategic roles of manufacturing and discuss why the configuration of strategic manufacturing roles, at the level of the network, will become a key issue and how the indirect strategic roles of manufacturing will become increasingly important. Additionally, by considering that value chains will become value webs, they predict that shifts in strategic manufacturing roles will look like a sequence of moves similar to a game of chess. Then, lastly under the first theme, Fleury and Fleury develop a conceptual framework for the study of production systems in general derived from field research in the telecommunications industry, here considered a prototype of the coming information society and knowledge economy. They propose a new typology of firms which, on certain dimensions, complements the propositions found in the other two articles. Their telecoms-based framework (TbF) comprises six types of companies characterised by distinct profiles of organisational competences, which interact according to specific patterns of relationships, thus creating distinct configurations of production networks. The second theme is addressed by Kyläheiko and SandstroÍm in their article “Strategic options based framework for management of dynamic capabilities in manufacturing firms”. They propose a new approach to strategic decision-making in markets characterised by turbulence and weak signals at the customer interface. Their framework for a manufacturing firm in the digital age leads to active asset selection (strategic investments in both tangible and intangible assets) and efficient orchestrating of the global value net in “thin” intangible asset markets. The framework consists of five steps based on Porter's five-forces model, the resources-based view, complemented by means of the concepts of strategic options and related flexibility issues. Thun, GroÍssler and Miczka's contribution to the third theme brings the human dimension to the debate regarding the future of manufacturing. Their article focuses on the challenges brought to management by the ageing of workers in Germany but, in the arguments that are raised, the future challenges associated to workers and work organisation in every production system become visible and relevant. An interesting point in the approach adopted by the authors is that not only the factual problems and solutions are taken into account but the perception of the managers is brought into the picture. China cannot be absent in the discussion of the future of manufacturing. Therefore, within the fourth theme, Vaidya, Bennett and Liu provide the evidence of the gradual improvement of Chinese companies in the medium and high-tech sectors, by using the revealed comparative advantage (RCA) analysis. The Chinese evolution is shown to be based on capabilities developed through combining international technology transfer and indigenous learning. The main implication for the Western companies is the need to take account of the accelerated rhythm of capability development in China. For other developing countries China's case provides lessons of great importance. Finally, under the fifth theme, Kuehnle's article: “Post mass production paradigm (PMPP) trajectories” provides a futuristic scenario of what is already around us and might become prevalent in the future. It takes a very intensive look at a whole set of dimensions that are affecting manufacturing now, and will influence manufacturing in the future, ranging from the application of ICT to the need for social transparency. In summary, this special issue of JMTM presents a brief, but undisputable, demonstration of the possible richness of manufacturing in the future. Indeed, we could even say that manufacturing has no future if we only stick to the past perspectives. Embracing the new is not easy. The new configurations of production systems, the distributed and complementary roles to be performed by distinct types of companies in diversified networked structures, leveraged by the new emergent technologies and associated the new challenges for managing people, are all themes that are carriers of the future. The Guest Editors of this special issue on the future of manufacturing are strongly convinced that their undertaking has been worthwhile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part 17: Risk Analysis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part 13: Virtual Reality and Simulation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part 10: Sustainability and Trust

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part 6: Engineering and Implementation of Collaborative Networks

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part 1: Introduction