929 resultados para Network cost allocation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of allocating the cost of the transmission network to generators and demands. A physically-based network usage procedure is proposed. This procedure exhibits desirable apportioning properties and is easy to implement and understand. A case study based on the IEEE 24-bus system is used to illustrate the working of the proposed technique. Some relevant conclusions are finally drawn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is devoted to Study and discuss the main methods to solve the network cost allocation problem both for generators and demands. From the presented, compared and discussed methods, the first one is based on power injections, the second deals with proportional sharing factors, the third is based upon Equivalent Bilateral Exchanges, the fourth analyzes the power How sensitivity in relation to the power injected, and the last one is based on Z(bus) network matrix. All the methods are initially illustrated using a 4-bus system. In addition, the IEEE 24-bus RTS system is presented for further comparisons and analysis. Appropriate conclusions are finally drawn. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents a new method for determining the transmission network usage by loads and generators, which can then be used for transmission cost/loss allocation in an explainable and justifiable manner. The proposed method is based on solid physical grounds and circuit theory. It relies on dividing the currents through the network into two components; the first one is attributed to power flows from generators to loads, whereas the second one is because of the generators only. Unlike almost all the available methods, the proposed method is assumption free and hence it is more accurate than similar methods even those having some physical basis. The proposed method is validated through a transformer analogy, and theoretical derivations. The method is verified through application to the IEEE 30 bus system and the IEEE 118 test system. The results obtained verified many desirable features of the proposed method. Being more accurate in determining the network usage, in an explainable transparent manner, and in giving accurate cost signals, indicating the best locations to add loads and generation, are among the many desirable features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper is presented a Game Theory based methodology to allocate transmission costs, considering cooperation and competition between producers. As original contribution, it finds the degree of participation on the additional costs according to the demand behavior. A comparative study was carried out between the obtained results using Nucleolus balance and Shapley Value, with other techniques such as Averages Allocation method and the Generalized Generation Distribution Factors method (GGDF). As example, a six nodes network was used for the simulations. The results demonstrate the ability to find adequate solutions on open access environment to the networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high penetration of distributed energy resources (DER) in distribution networks and the competitiveenvironment of electricity markets impose the use of new approaches in several domains. The networkcost allocation, traditionally used in transmission networks, should be adapted and used in the distribu-tion networks considering the specifications of the connected resources. The main goal is to develop afairer methodology trying to distribute the distribution network use costs to all players which are usingthe network in each period. In this paper, a model considering different type of costs (fixed, losses, andcongestion costs) is proposed comprising the use of a large set of DER, namely distributed generation(DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehi-cles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). Theproposed model includes three distinct phases of operation. The first phase of the model consists in aneconomic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen’s andBialek’s tracing algorithms are used and compared to evaluate the impact of each resource in the net-work. Finally, the MW-mile method is used in the third phase of the proposed model. A distributionnetwork of 33 buses with large penetration of DER is used to illustrate the application of the proposedmodel.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

American Association of State Highway and Transportation Officials, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"March 1982."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of distribution networks in the current scenario of high penetration of Distributed Generation (DG) is a problem of great importance. In the competitive environment of electricity markets and smart grids, Demand Response (DR) is also gaining notable impact with several benefits for the whole system. The work presented in this paper comprises a methodology able to define the cost allocation in distribution networks considering large integration of DG and DR resources. The proposed methodology is divided into three phases and it is based on an AC Optimal Power Flow (OPF) including the determination of topological distribution factors, and consequent application of the MW-mile method. The application of the proposed tariffs definition methodology is illustrated in a distribution network with 33 buses, 66 DG units, and 32 consumers with DR capacity.