923 resultados para Network control
Resumo:
The intelligent controlling mechanism of a typical mobile robot is usually a computer system. Research is however now ongoing in which biological neural networks are being cultured and trained to act as the brain of an interactive real world robot – thereby either completely replacing or operating in a cooperative fashion with a computer system. Studying such neural systems can give a distinct insight into biological neural structures and therefore such research has immediate medical implications. The principal aims of the present research are to assess the computational and learning capacity of dissociated cultured neuronal networks with a view to advancing network level processing of artificial neural networks. This will be approached by the creation of an artificial hybrid system (animat) involving closed loop control of a mobile robot by a dissociated culture of rat neurons. This paper details the components of the overall animat closed loop system architecture and reports on the evaluation of the results from preliminary real-life and simulated robot experiments.
Primer for an application of adaptive synthetic socioeconomic agents for intelligent network control
Resumo:
The deployment of Quality of Service (QoS) techniques involves careful analysis of area including: those business requirements; corporate strategy; and technical implementation process, which can lead to conflict or contradiction between those goals of various user groups involved in that policy definition. In addition long-term change management provides a challenge as these implementations typically require a high-skill set and experience level, which expose organisations to effects such as “hyperthymestria” [1] and “The Seven Sins of Memory”, defined by Schacter and discussed further within this paper. It is proposed that, given the information embedded within the packets of IP traffic, an opportunity exists to augment the traffic management with a machine-learning agent-based mechanism. This paper describes the process by which current policies are defined and that research required to support the development of an application which enables adaptive intelligent Quality of Service controls to augment or replace those policy-based mechanisms currently in use.
Resumo:
In recent years researchers in the Department of Cybernetics have been developing simple mobile robots capable of exploring their environment on the basis of the information obtained from a few simple sensors. These robots are used as the test bed for exploring various behaviours of single and multiple organisms: the work is inspired by considerations of natural systems. In this paper we concentrate on that part of the work which involves neural networks and related techniques. These neural networks are used both to process the sensor information and to develop the strategy used to control the robot. Here the robots, their sensors, and the neural networks used and all described. 1.
Resumo:
In this paper we explore the practical use of neural networks for controlling complex non-linear systems. The system used to demonstrate this approach is a simulation of a gas turbine engine typical of those used to power commercial aircraft. The novelty of the work lies in the requirement for multiple controllers which are used to maintain system variables in safe operating regions as well as governing the engine thrust.
Resumo:
Network control systems (NCSs) are spatially distributed systems in which the communication between sensors, actuators and controllers occurs through a shared band-limited digital communication network. However, the use of a shared communication network, in contrast to using several dedicated independent connections, introduces new challenges which are even more acute in large scale and dense networked control systems. In this paper we investigate a recently introduced technique of gathering information from a dense sensor network to be used in networked control applications. Obtaining efficiently an approximate interpolation of the sensed data is exploited as offering a good tradeoff between accuracy in the measurement of the input signals and the delay to the actuation. These are important aspects to take into account for the quality of control. We introduce a variation to the state-of-the-art algorithms which we prove to perform relatively better because it takes into account the changes over time of the input signal within the process of obtaining an approximate interpolation.
Resumo:
In the present study, we modeled a reaching task as a two-link mechanism. The upper arm and forearm motion trajectories during vertical arm movements were estimated from the measured angular accelerations with dual-axis accelerometers. A data set of reaching synergies from able-bodied individuals was used to train a radial basis function artificial neural network with upper arm/forearm tangential angular accelerations. The trained radial basis function artificial neural network for the specific movements predicted forearm motion from new upper arm trajectories with high correlation (mean, 0.9149-0.941). For all other movements, prediction was low (range, 0.0316-0.8302). Results suggest that the proposed algorithm is successful in generalization over similar motions and subjects. Such networks may be used as a high-level controller that could predict forearm kinematics from voluntary movements of the upper arm. This methodology is suitable for restoring the upper limb functions of individuals with motor disabilities of the forearm, but not of the upper arm. The developed control paradigm is applicable to upper-limb orthotic systems employing functional electrical stimulation. The proposed approach is of great significance particularly for humans with spinal cord injuries in a free-living environment. The implication of a measurement system with dual-axis accelerometers, developed for this study, is further seen in the evaluation of movement during the course of rehabilitation. For this purpose, training-related changes in synergies apparent from movement kinematics during rehabilitation would characterize the extent and the course of recovery. As such, a simple system using this methodology is of particular importance for stroke patients. The results underlie the important issue of upper-limb coordination.
Resumo:
Drinking water utilities in urban areas are focused on finding smart solutions facing new challenges in their real-time operation because of limited water resources, intensive energy requirements, a growing population, a costly and ageing infrastructure, increasingly stringent regulations, and increased attention towards the environmental impact of water use. Such challenges force water managers to monitor and control not only water supply and distribution, but also consumer demand. This paper presents and discusses novel methodologies and procedures towards an integrated water resource management system based on advanced ICT technologies of automation and telecommunications for largely improving the efficiency of drinking water networks (DWN) in terms of water use, energy consumption, water loss minimization, and water quality guarantees. In particular, the paper addresses the first results of the European project EFFINET (FP7-ICT2011-8-318556) devoted to the monitoring and control of the DWN in Barcelona (Spain). Results are split in two levels according to different management objectives: (i) the monitoring level is concerned with all the aspects involved in the observation of the current state of a system and the detection/diagnosis of abnormal situations. It is achieved through sensors and communications technology, together with mathematical models; (ii) the control level is concerned with computing the best suitable and admissible control strategies for network actuators as to optimize a given set of operational goals related to the performance of the overall system. This level covers the network control (optimal management of water and energy) and the demand management (smart metering, efficient supply). The consideration of the Barcelona DWN as the case study will allow to prove the general applicability of the proposed integrated ICT solutions and their effectiveness in the management of DWN, with considerable savings of electricity costs and reduced water loss while ensuring the high European standards of water quality to citizens.
Resumo:
Problems for intellectualisation for man-machine interface and methods of self-organization for network control in multi-agent infotelecommunication systems have been discussed. Architecture and principles for construction of network and neural agents for telecommunication systems of new generation have been suggested. Methods for adaptive and multi-agent routing for information flows by requests of external agents- users of global telecommunication systems and computer networks have been described.
Resumo:
One of the major drawbacks for mobile nodes in wireless networks is power management. Our goal is to evaluate the performance power control scheme to be used to reduce network congestion, improve quality of service and collision avoidance in vehicular network and road safety application. Some of the importance of power control (PC) are improving spatial reuse, and increasing network capacity in mobile wireless communications. In this simulation we have evaluated the performance of existing rate algorithms compared with context Aware Rate selection algorithm (ACARS) and also seen the performance of ACARS and how it can be applied to road safety, improve network control and power management. Result shows that ACARS is able to minimize the total transmit power in the presence of propagation processes and mobility of vehicles, by adapting to the fast varying channels conditions with the Path loss exponent values that was used for that environment which is shown in the network simulation parameter. Our results have shown that ACARS is a very robust algorithm which performs very well with the effect of propagation processes that is prone to every transmitted signal in mobile networks. © 2013 IEEE.
Resumo:
Eukaryotic phenotypic diversity arises from multitasking of a core proteome of limited size. Multitasking is routine in computers, as well as in other sophisticated information systems, and requires multiple inputs and outputs to control and integrate network activity. Higher eukaryotes have a mosaic gene structure with a dual output, mRNA (protein-coding) sequences and introns, which are released from the pre-mRNA by posttranscriptional processing. Introns have been enormously successful as a class of sequences and comprise up to 95% of the primary transcripts of protein-coding genes in mammals. In addition, many other transcripts (perhaps more than half) do not encode proteins at all, but appear both to be developmentally regulated and to have genetic function. We suggest that these RNAs (eRNAs) have evolved to function as endogenous network control molecules which enable direct gene-gene communication and multitasking of eukaryotic genomes. Analysis of a range of complex genetic phenomena in which RNA is involved or implicated, including co-suppression, transgene silencing, RNA interference, imprinting, methylation, and transvection, suggests that a higher-order regulatory system based on RNA signals operates in the higher eukaryotes and involves chromatin remodeling as well as other RNA-DNA, RNA-RNA, and RNA-protein interactions. The evolution of densely connected gene networks would be expected to result in a relatively stable core proteome due to the multiple reuse of components, implying,that cellular differentiation and phenotypic variation in the higher eukaryotes results primarily from variation in the control architecture. Thus, network integration and multitasking using trans-acting RNA molecules produced in parallel with protein-coding sequences may underpin both the evolution of developmentally sophisticated multicellular organisms and the rapid expansion of phenotypic complexity into uncontested environments such as those initiated in the Cambrian radiation and those seen after major extinction events.
Resumo:
Neste documento descreve-se o projeto desenvolvido na unidade curricular de Tese e Dissertação durante o 2º ano do Mestrado de Engenharia Eletrotécnica e de Computadores no ramo de Automação e Sistemas, no Departamento de Engenharia Eletrotécnica (DEE) do Instituto Superior de Engenharia do Porto (ISEP). O projeto escolhido teve como base o uso da tecnologia das redes neuronais para implementação em sistemas de controlo. Foi necessário primeiro realizar um estudo desta tecnologia, perceber como esta surgiu e como é estruturada. Por último, abordar alguns casos de estudo onde as redes neuronais foram aplicadas com sucesso. Relativamente à implementação, foram consideradas diferentes estruturas de controlo, e entre estas escolhidas a do sistema de controlo estabilizador e sistema de referência adaptativo. No entanto, como o objetivo deste trabalho é o estudo de desempenho quando aplicadas as redes neuronais, não se utilizam apenas estas como controlador. A análise exposta neste trabalho trata de perceber em que medida é que a introdução das redes neuronais melhora o controlo de um processo. Assim sendo, os sistemas de controlo utilizados devem conter pelo menos uma rede neuronal e um controlador PID. Os testes de desempenho são aplicados no controlo de um motor DC, sendo realizados através do recurso ao software MATLAB. As simulações efetuadas têm diferentes configurações de modo a tirar conclusões o mais gerais possível. Assim, os sistemas de controlo são simulados para dois tipos de entrada diferentes, e com ou sem a adição de ruído no sensor. Por fim, é efetuada uma análise das respostas de cada sistema implementado e calculados os índices de desempenho das mesmas.
Resumo:
L'objectiu d'aquest treball de final de carrera és implementar una aplicació sobre un node de xarxa sense fils equipat amb un microcontrolador, una ràdio i un conjunt de sensors, emprant el llenguatge nesC sobre el sistema operatiu TinyOS. Aquesta proposta consisteix en un sistema domòtic que detecti si un habitacle està ocupat i permeti controlar-ne la temperatura i el nivell de il·luminació per tal de que es mantenguin dins uns valors establerts que poden ser modificats per l'usuari.
Resumo:
Today, information technology is strategically important to the goals and aspirations of the business enterprises, government and high-level education institutions – university. Universities are facing new challenges with the emerging global economy characterized by the importance of providing faster communication services and improving the productivity and effectiveness of individuals. New challenges such as provides an information network that supports the demands and diversification of university issues. A new network architecture, which is a set of design principles for build a network, is one of the pillar bases. It is the cornerstone that enables the university’s faculty, researchers, students, administrators, and staff to discover, learn, reach out, and serve society. This thesis focuses on the network architecture definitions and fundamental components. Three most important characteristics of high-quality architecture are that: it’s open network architecture; it’s service-oriented characteristics and is an IP network based on packets. There are four important components in the architecture, which are: Services and Network Management, Network Control, Core Switching and Edge Access. The theoretical contribution of this study is a reference model Architecture of University Campus Network that can be followed or adapted to build a robust yet flexible network that respond next generation requirements. The results found are relevant to provide an important complete reference guide to the process of building campus network which nowadays play a very important role. Respectively, the research gives university networks a structured modular model that is reliable, robust and can easily grow.
Resumo:
Nykyaikaisen teollisuusympäristön toiminta nojaa pitkälti tietotekniikkaan,erityisesti tietoliikenneverkolla on merkittävä rooli. Jos verkkokatkon vuoksi informaatio ei kulje tehtaan eri yksiköiden välillä, saattaa koko tehdas pysähtyä. Tästä puolestaan voi seurata merkittäviä tuotannollisia menetyksiä. Tietoliikenneverkon häiriöttömän toiminnan varmistamisessa valvonta onkeskeisessä asemassa. Valvontatyökaluilla nähdään muun muassa verkon eri osa-alueiden kuormitus ja saadaan hälytys, jos jokin raja-arvo ylitetään tai jokin komponentti lakkaa toimimasta. Toinen tärkeä seikka on tietoliikenneverkon dokumentaatio, josta nähdään verkon rakenne, komponenttien fyysinen sijainti ja miten neon kytketty toisiinsa. Yhdistämällä valvonnan, dokumentaation ja osaavan henkilökunnan, päästään proaktiiviiseen verkonvalvontaan, jossa vikoja voidaan välttääja ehkäistä ennakkoon tehdyillä toimenpiteillä. Tärkeydestään huolimatta tietoliikenneverkon dokumentaatio on usein jätetty kokonaan tekemättä tai ainakaan se ei ole ajan tasalla. Tähän on monia syitä, joista eräs on kunnollisen dokumentaatio-ohjelmiston puuttuminen. Siksi tässä työssä kehitetään reaaliaikainen dokumentaatiojärjestelmä, jonka avulla tietoliikenneverkon dokumentointi voidaan tehdä, ja jonka ansiosta se myös pysyy ajan tasalla tietojen automaattisen päivityksen ansiosta.