954 resultados para Network Selection
Resumo:
A heterogeneous wireless network is characterized by the presence of different wireless access technologies that coexist in an overlay fashion. These wireless access technologies usually differ in terms of their operating parameters. On the other hand, Mobile Stations (MSs) in a heterogeneous wireless network are equipped with multiple interfaces to access different types of services from these wireless access technologies. The ultimate goal of these heterogeneous wireless networks is to provide global connectivity with efficient ubiquitous computing to these MSs based on the Always Best Connected (ABC) principle. This is where the need for intelligent and efficient Vertical Handoffs (VHOs) between wireless technologies in a heterogeneous environment becomes apparent. This paper presents the design and implementation of a fuzzy multicriteria based Vertical Handoff Necessity Estimation (VHONE) scheme that determines the proper time for VHO, while considering the continuity and quality of the currently utilized service, and the end-users' satisfaction.
Resumo:
Global connectivity is on the verge of becoming a reality to provide high-speed, high-quality, and reliable communication channels for mobile devices at anytime, anywhere in the world. In a heterogeneous wireless environment, one of the key ingredients to provide efficient and ubiquitous computing with guaranteed quality and continuity of service is the design of intelligent handoff algorithms. Traditional single-metric handoff decision algorithms, such as Received Signal Strength (RSS), are not efficient and intelligent enough to minimize the number of unnecessary handoffs, decision delays, call-dropping and blocking probabilities. This research presents a novel approach for of a Multi Attribute Decision Making (MADM) model based on an integrated fuzzy approach for target network selection.
Resumo:
Staphylococcus aureus (S. aureus) is a prominent human and livestock pathogen investigated widely using omic technologies. Critically, due to availability, low visibility or scattered resources, robust network and statistical contextualisation of the resulting data is generally under-represented. Here, we present novel meta-analyses of freely-accessible molecular network and gene ontology annotation information resources for S. aureus omics data interpretation. Furthermore, through the application of the gene ontology annotation resources we demonstrate their value and ability (or lack-there-of) to summarise and statistically interpret the emergent properties of gene expression and protein abundance changes using publically available data. This analysis provides simple metrics for network selection and demonstrates the availability and impact that gene ontology annotation selection can have on the contextualisation of bacterial omics data.
Resumo:
Nowadays, communication environments are already characterized by a myriad of competing and complementary technologies that aim to provide an ubiquitous connectivity service. Next Generation Networks need to hide this heterogeneity by providing a new abstraction level, while simultaneously be aware of the underlying technologies to deliver richer service experiences to the end-user. Moreover, the increasing interest for group-based multimedia services followed by their ever growing resource demands and network dynamics, has been boosting the research towards more scalable and exible network control approaches. The work developed in this Thesis enables such abstraction and exploits the prevailing heterogeneity in favor of a context-aware network management and adaptation. In this scope, we introduce a novel hierarchical control framework with self-management capabilities that enables the concept of Abstract Multiparty Trees (AMTs) to ease the control of multiparty content distribution throughout heterogeneous networks. A thorough evaluation of the proposed multiparty transport control framework was performed in the scope of this Thesis, assessing its bene ts in terms of network selection, delivery tree recon guration and resource savings. Moreover, we developed an analytical study to highlight the scalability of the AMT concept as well as its exibility in large scale networks and group sizes. To prove the feasibility and easy deployment characteristic of the proposed control framework, we implemented a proof-of-concept demonstrator that comprehends the main control procedures conceptually introduced. Its outcomes highlight a good performance of the multiparty content distribution tree control, including its local and global recon guration. In order to endow the AMT concept with the ability to guarantee the best service experience by the end-user, we integrate in the control framework two additional QoE enhancement approaches. The rst employs the concept of Network Coding to improve the robustness of the multiparty content delivery, aiming at mitigating the impact of possible packet losses in the end-user service perception. The second approach relies on a machine learning scheme to autonomously determine at each node the expected QoE towards a certain destination. This knowledge is then used by di erent QoE-aware network management schemes that, jointly, maximize the overall users' QoE. The performance and scalability of the control procedures developed, aided by the context and QoE-aware mechanisms, show the advantages of the AMT concept and the proposed hierarchical control strategy for the multiparty content distribution with enhanced service experience. Moreover we also prove the feasibility of the solution in a practical environment, and provide future research directions that bene t the evolved control framework and make it commercially feasible.
Resumo:
Ontario Colleges of Applied Arts and Technology (CAATs) are currently in the process of restructuring to ensure quality, accountability, and accessibility of college education. References to learner involvement and self-directed learning are prevalent. "Alternative delivery" and "paradigm shift" are current buzzwords within the Ontario CAAT system as an environment is created supportive of change. Instability of funding has also dictated a need for change. Therefore, a focus has become quality of learning with less demand on public resources. This qualitative case study was conducted at an Ontario CAAT to gather descriptive, perceptual data from post-secondary community college educators who were identified as supportive of self-directed learning and from post-secondary, traditional-aged college students who were perceived by their educators to be selfdirected learners. This college was selected because of initiatives to modify its academic paradigm to encourage what was reputed in the Ontario CAAT system to be self-directed learning. The purpose of this study was to investigate how postsecondary, traditional-aged college students and their educators perceive self-directed learning as part of the teaching-learning experience within a community college setting. Educator participants of the study were selected based on the results of a teaching and learning survey intended to identify educators supportive of self-directed learning. A total of 317 surveys were distributed to every full-time educator at the sample college; 192 completed surveys were returned for a return rate of 61 %. Of these, 8% indicated instructional beliefs and values supportive of self-directed learning. A purposive sample of six educators was selected using a maximulp variation sampling strategy. A network selection sampling strategy was used to select a purposive sample of seven post-secondary students who were identified by the sample educators as selfdirected learners. The results of the study show that students and educators have similar perspectives and operating definitions of self-directed learning and all participants believe they either practice or facilitate self-directed learning. However, their perspectives and practices are not consistent with the literature which emphasizes learner autonomy or control in course structure and content. A central characteristic of the participants represented in this study is the service-oriented professions with which each is associated. Experientiallearning opportunities were highly valued for the options provided in increasing learner independence and competencies in reflective practice. Although there were discrepancies between espoused theory and theory in practice in terms of course structure, the process of self-directed learning was being practiced and supported outside the classroom structure in clinical settings, labs and related experiences.
Resumo:
Identifying appropriate decision criteria and making optimal decisions in a structured way is a complex process. This paper presents an approach for doing this in the form of a hybrid Quality Function Deployment (QFD) and Cybernetic Analytic Network Process (CANP) model for project manager selection. This involves the use of QFD to translate the owner's project management expectations into selection criteria and the CANP to weight the expectations and selection criteria. The supermatrix approach then prioritises the candidates with respect to the overall decision-making goal. A case study is used to demonstrate the use of the model in selecting a renovation project manager. This involves the development of 18 selection criteria in response to the owner's three main expectations of time, cost and quality.
Resumo:
In this report an artificial neural network (ANN) based automated emergency landing site selection system for unmanned aerial vehicle (UAV) and general aviation (GA) is described. The system aims increase safety of UAV operation by emulating pilot decision making in emergency landing scenarios using an ANN to select a safe landing site from available candidates. The strength of an ANN to model complex input relationships makes it a perfect system to handle the multicriteria decision making (MCDM) process of emergency landing site selection. The ANN operates by identifying the more favorable of two landing sites when provided with an input vector derived from both landing site's parameters, the aircraft's current state and wind measurements. The system consists of a feed forward ANN, a pre-processor class which produces ANN input vectors and a class in charge of creating a ranking of landing site candidates using the ANN. The system was successfully implemented in C++ using the FANN C++ library and ROS. Results obtained from ANN training and simulations using randomly generated landing sites by a site detection simulator data verify the feasibility of an ANN based automated emergency landing site selection system.
Resumo:
We implement two energy models that accurately and comprehensively estimates the system energy cost and communication energy cost for using Bluetooth and Wi-Fi interfaces. The energy models running on a system is used to smartly pick the most energy optimal network interface so that data transfer between two end points is maximized.
Resumo:
This paper analyzes the use of artificial neural networks (ANNs) for predicting the received power/path loss in both outdoor and indoor links. The approach followed has been a combined use of ANNs and ray-tracing, the latter allowing the identification and parameterization of the so-called dominant path. A complete description of the process for creating and training an ANN-based model is presented with special emphasis on the training process. More specifically, we will be discussing various techniques to arrive at valid predictions focusing on an optimum selection of the training set. A quantitative analysis based on results from two narrowband measurement campaigns, one outdoors and the other indoors, is also presented.
Resumo:
Nonlinear models constructed from radial basis function (RBF) networks can easily be over-fitted due to the noise on the data. While information criteria, such as the final prediction error (FPE), can provide a trade-off between training error and network complexity, the tunable parameters that penalise a large size of network model are hard to determine and are usually network dependent. This article introduces a new locally regularised, two-stage stepwise construction algorithm for RBF networks. The main objective is to produce a parsomous network that generalises well over unseen data. This is achieved by utilising Bayesian learning within a two-stage stepwise construction procedure to penalise centres that are mainly interpreted by the noise.
Resumo:
Ecological coherence is a multifaceted conservation objective that includes some potentially conflicting concepts. These concepts include the extent to which the network maximises diversity (including genetic diversity) and the extent to which protected areas interact with non-reserve locations. To examine the consequences of different selection criteria, the preferred location to complement protected sites was examined using samples taken from four locations around each of two marine protected areas: Strangford Lough and Lough Hyne, Ireland. Three different measures of genetic distance were used: FST, Dest and a measure of allelic dissimilarity, along with a direct assessment of the total number of alleles in different candidate networks. Standardized site scores were used for comparisons across methods and selection criteria. The average score for Castlehaven, a site relatively close to Lough Hyne, was highest, implying that this site would capture the most genetic diversity while ensuring highest degree of interaction between protected and unprotected sites. Patterns around Strangford Lough were more ambiguous, potentially reflecting the weaker genetic structure around this protected area in comparison to Lough Hyne. Similar patterns were found across species with different dispersal capacities, indicating that methods based on genetic distance could be used to help maximise ecological coherence in reserve networks. ⺠Ecological coherence is a key component of marine protected area network design. ⺠Coherence contains a number of competing concepts. ⺠Genetic information from field populations can help guide assessments of coherence. ⺠Average choice across different concepts of coherence was consistent among species. ⺠Measures can be combined to compare the coherence of different network designs.
Resumo:
In this paper, we investigate an amplify-and-forward (AF) multiple-input multiple-output - spatial division multiplexing (MIMO-SDM) cooperative wireless networks, where each network node is equipped with multiple antennas. In order to deal with the problems of signal combining at the destination and cooperative relay selection, we propose an improved minimum mean square error (MMSE) signal combining scheme for signal recovery at the destination. Additionally, we propose two distributed relay selection algorithms based on the minimum mean squared error (MSE) of the signal estimation for the cases where channel state information (CSI) from the source to the destination is available and unavailable at the candidate nodes. Simulation results demonstrate that the proposed combiner together with the proposed relay selection algorithms achieve higher diversity gain than previous approaches in both flat and frequency-selective fading channels.
Resumo:
An orthogonal forward selection (OFS) algorithm based on the leave-one-out (LOO) criterion is proposed for the construction of radial basis function (RBF) networks with tunable nodes. This OFS-LOO algorithm is computationally efficient and is capable of identifying parsimonious RBF networks that generalise well. Moreover, the proposed algorithm is fully automatic and the user does not need to specify a termination criterion for the construction process.