919 resultados para Network Dynamics
Resumo:
Networks form a key part of the infrastructure of contemporary governance arrangements and, as such, are likely to continue for some time. Networks can take many forms and be formed for many reasons. Some networks have been explicitly designed to generate a collective response to an issue; some arise from a top down perspective through mandate or coercion; while others rely more heavily on interpersonal relations and doing the right thing. In this paper, these three different perspectives are referred to as the “3I”s: Instrumental, Institutional or Interpersonal. It is proposed that these underlying motivations will affect the process dynamics within the different types of networks in different ways and therefore influence the type of outcomes achieved. This proposition is tested through a number of case studies. An understanding of these differences will lead to more effective design, management and clearer expectations of what can be achieved through networks.
Resumo:
A useful insight into managerial decision making can be found from simulation of business systems, but existing work on simulation of supply chain behaviour has largely considered non-competitive chains. Where competitive agents have been examined, they have generally had a simple structure and been used for fundamental examination of stability and equilibria rather than providing practical guidance to managers. In this paper, a new agent for the study of competitive supply chain network dynamics is proposed. The novel features of the agent include the ability to select between competing vendors, distribute orders preferentially among many customers, manage production and inventory, and determine price based on competitive behaviour. The structure of the agent is related to existing business models and sufficient details are provided to allow implementation. The agent is tested to demonstrate that it recreates the main results of the existing modelling and management literature on supply chain dynamics. A brief exploration of competitive dynamics is given to confirm that the proposed agent can respond to competition. The results demonstrate that overall profitability for a supply chain network is maximised when businesses operate collectively. It is possible for an individual business to achieve higher profits by adopting a more competitive stance, but the consequence of this is that the overall profitability of the network is reduced. The agent will be of use for a broad range of studies on the long-run effect of management decisions on their network of suppliers and customers.
Resumo:
Results from two studies on longitudinal friendship networks are presented, exploring the impact of a gratitude intervention on positive and negative affect dynamics in a social network. The gratitude intervention had been previously shown to increase positive affect and decrease negative affect in an individual but dynamic group effects have not been considered. In the first study the intervention was administered to the whole network. In the second study two social networks are considered and in each only a subset of individuals, initially low/high in negative affect respectively received the intervention as `agents of change'. Data was analyzed using stochastic actor based modelling techniques to identify resulting network changes, impact on positive and negative affect and potential contagion of mood within the group. The first study found a group level increase in positive and a decrease in negative affect. Homophily was detected with regard to positive and negative affect but no evidence of contagion was found. The network itself became more volatile along with a fall in rate of change of negative affect. Centrality measures indicated that the best broadcasters were the individuals with the least negative affect levels at the beginning of the study. In the second study, the positive and negative affect levels for the whole group depended on the initial levels of negative affect of the intervention recipients. There was evidence of positive affect contagion in the group where intervention recipients had low initial level of negative affect and contagion in negative affect for the group where recipients had initially high level of negative affect.
Resumo:
Both deepening sleep and evolving epileptic seizures are associated with increasing slow-wave activity. Larger-scale functional networks derived from electroencephalogram indicate that in both transitions dramatic changes of communication between brain areas occur. During seizures these changes seem to be 'condensed', because they evolve more rapidly than during deepening sleep. Here we set out to assess quantitatively functional network dynamics derived from electroencephalogram signals during seizures and normal sleep. Functional networks were derived from electroencephalogram signals from wakefulness, light and deep sleep of 12 volunteers, and from pre-seizure, seizure and post-seizure time periods of 10 patients suffering from focal onset pharmaco-resistant epilepsy. Nodes of the functional network represented electrical signals recorded by single electrodes and were linked if there was non-random cross-correlation between the two corresponding electroencephalogram signals. Network dynamics were then characterized by the evolution of global efficiency, which measures ease of information transmission. Global efficiency was compared with relative delta power. Global efficiency significantly decreased both between light and deep sleep, and between pre-seizure, seizure and post-seizure time periods. The decrease of global efficiency was due to a loss of functional links. While global efficiency decreased significantly, relative delta power increased except between the time periods wakefulness and light sleep, and pre-seizure and seizure. Our results demonstrate that both epileptic seizures and deepening sleep are characterized by dramatic fragmentation of larger-scale functional networks, and further support the similarities between sleep and seizures.
Resumo:
Structural characteristics of social networks have been recognized as important factors of effective natural resource governance. However, network analyses of natural resource governance most often remain static, even though governance is an inherently dynamic process. In this article, we investigate the evolution of a social network of organizational actors involved in the governance of natural resources in a regional nature park project in Switzerland. We ask how the maturation of a governance network affects bonding social capital and centralization in the network. Applying separable temporal exponential random graph modeling (STERGM), we test two hypotheses based on the risk hypothesis by Berardo and Scholz (2010) in a longitudinal setting. Results show that network dynamics clearly follow the expected trend toward generating bonding social capital but do not imply a shift toward less hierarchical and more decentralized structures over time. We investigate how these structural processes may contribute to network effectiveness over time.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Transcriptional regulatory networks govern cell differentiation and the cellular response to external stimuli. However, mammalian model systems have not yet been accessible for network analysis. Here, we present a genome-wide network analysis of the transcriptional regulation underlying the mouse macrophage response to bacterial lipopolysaccharide (LPS). Key to uncovering the network structure is our combination of time-series cap analysis of gene expression with in silico prediction of transcription factor binding sites. By integrating microarray and qPCR time-series expression data with a promoter analysis, we find dynamic subnetworks that describe how signaling pathways change dynamically during the progress of the macrophage LPS response, thus defining regulatory modules characteristic of the inflammatory response. In particular, our integrative analysis enabled us to suggest novel roles for the transcription factors ATF-3 and NRF-2 during the inflammatory response. We believe that our system approach presented here is applicable to understanding cellular differentiation in higher eukaryotes. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Attractor properties of a popular discrete-time neural network model are illustrated through numerical simulations. The most complex dynamics is found to occur within particular ranges of parameters controlling the symmetry and magnitude of the weight matrix. A small network model is observed to produce fixed points, limit cycles, mode-locking, the Ruelle-Takens route to chaos, and the period-doubling route to chaos. Training algorithms for tuning this dynamical behaviour are discussed. Training can be an easy or difficult task, depending whether the problem requires the use of temporal information distributed over long time intervals. Such problems require training algorithms which can handle hidden nodes. The most prominent of these algorithms, back propagation through time, solves the temporal credit assignment problem in a way which can work only if the relevant information is distributed locally in time. The Moving Targets algorithm works for the more general case, but is computationally intensive, and prone to local minima.
Resumo:
All-atom molecular dynamics simulations for a single molecule of Leu-Enkephalin in aqueous solution have been used to study the role of the water network during the formation of ß-turns. We give a detailed account of the intramolecular hydrogen bonding, the water-peptide hydrogen bonding, and the orientation and residence times of water molecules focusing on the short critical periods of transition to the stable ß-turns. These studies suggest that, when intramolecular hydrogen bonding between the first and fourth residue of the ß-turn is not present, the disruption of the water network and the establishment of water bridges constitute decisive factors in the formation and stability of the ß-turn. Finally, we provide possible explanations and mechanisms for the formations of different kinds of ß-turns.
Resumo:
Epilepsy is one of the most common neurological disorders, a large fraction of which is resistant to pharmacotherapy. In this light, understanding the mechanisms of epilepsy and its intractable forms in particular could create new targets for pharmacotherapeutic intervention. The current project explores the dynamic changes in neuronal network function in the chronic temporal lobe epilepsy (TLE) in rat and human brain in vitro. I focused on the process of establishment of epilepsy (epileptogenesis) in the temporal lobe. Rhythmic behaviour of the hippocampal neuronal networks in healthy animals was explored using spontaneous oscillations in the gamma frequency band (SγO). The use of an improved brain slice preparation technique resulted in the natural occurence (in the absence of pharmacological stimulation) of rhythmic activity, which was then pharmacologically characterised and compared to other models of gamma oscillations (KA- and CCh-induced oscillations) using local field potential recording technique. The results showed that SγO differed from pharmacologically driven models, suggesting higher physiological relevance of SγO. Network activity was also explored in the medial entorhinal cortex (mEC), where spontaneous slow wave oscillations (SWO) were detected. To investigate the course of chronic TLE establishment, a refined Li-pilocarpine-based model of epilepsy (RISE) was developed. The model significantly reduced animal mortality and demonstrated reduced intensity, yet high morbidy with almost 70% mean success rate of developing spontaneous recurrent seizures. We used SγO to characterize changes in the hippocampal neuronal networks throughout the epileptogenesis. The results showed that the network remained largely intact, demonstrating the subtle nature of the RISE model. Despite this, a reduction in network activity was detected during the so-called latent (no seizure) period, which was hypothesized to occur due to network fragmentation and an abnormal function of kainate receptors (KAr). We therefore explored the function of KAr by challenging SγO with kainic acid (KA). The results demonstrated a remarkable decrease in KAr response during the latent period, suggesting KAr dysfunction or altered expression, which will be further investigated using a variety of electrophysiological and immunocytochemical methods. The entorhinal cortex, together with the hippocampus, is known to play an important role in the TLE. Considering this, we investigated neuronal network function of the mEC during epileptogenesis using SWO. The results demonstrated a striking difference in AMPAr function, with possible receptor upregulation or abnormal composition in the early development of epilepsy. Alterations in receptor function inevitably lead to changes in the network function, which may play an important role in the development of epilepsy. Preliminary investigations were made using slices of human brain tissue taken following surgery for intratctable epilepsy. Initial results showed that oscillogenesis could be induced in human brain slices and that such network activity was pharmacologically similar to that observed in rodent brain. Overall, our findings suggest that excitatory glutamatergic transmission is heavily involved in the process of epileptogenesis. Together with other types of receptors, KAr and AMPAr contribute to epilepsy establishment and may be the key to uncovering its mechanism.