958 resultados para Net-Biome
Resumo:
Net-Biome Final Meeting (Paris, 15 & 16 February, 2012).
Resumo:
1. Exchange of carbon dioxide (CO2) from soils can contribute significantly to the global warming potential (GWP) of agro-ecosystems. Due to variations in soil type, climatic onditions and land management practices, exchange of CO2 can differ markedly in different geographical locations. The food industry is developing carbon footprints for their products necessitating integration of CO2 exchange from soils with other CO2 emissions along the food chain. It may be advantageous to grow certain crops in different geographical locations to minimize CO2 emissions from the soil, and this may provide potential to offset other emissions in the food chain, such as transport. 2. Values are derived for the C balance of soils growing horticultural crops in the UK, Spain and Uganda. Net ecosystem production (NEP) is firstly calculated from the difference in net primary production (NPP) and heterotrophic soil respiration (Rh). Both NPP and Rh were estimated from intensive direct field measurements. Secondly, net biome production (NBP) is calculated by subtracting the crop biomass from NEP to give an indication of C balance. The importance of soil exchange is discussed in the light of recent discussions on carbon footprints and within the context of food life-cycle assessment (LCA). 3. The amount of crop relative to the biomass and the Rh prevailing in the different countries were the dominant factors influencing the magnitude of NEP and NBP. The majority of the biomass for lettuce Lactuca sativa and vining peas Pisum sativum, was removed from the field as crop; therefore, NEP and NBP were mainly negative. This was amplified for lettuces grown in Uganda (-16·5 and -17 t C ha-1 year-1 compared to UK and Spain -4·8 to 7·4 and -5·1 to 6·3 t C ha-1 year-1 for NEP and NBP, respectively) where the climate elevated Rh. 4. Synthesis and applications. This study demonstrates the importance of soil emissions in the overall life cycle of vegetables. Variability in such emissions suggests that assigning a single value to food carbon footprints may not be adequate, even within a country. Locations with high heterotrophic soil respiration, such as Spain and Uganda (21·9 and 21·6 t C ha-1 year-1, respectively), could mitigate the negative effects of climate on the C costs of crop production by growth of crops with greater returns of residue to the soil. This would minimize net CO2 emissions from these agricultural ecosystems.
Resumo:
We investigated the seasonal patterns of water vapor and sensible heat flux along a tropical biome gradient from forest to savanna. We analyzed data from a network of flux towers in Brazil that were operated within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). These tower sites included tropical humid and semideciduous forest, transitional forest, floodplain (with physiognomies of cerrado), and cerrado sensu stricto. The mean annual sensible heat flux at all sites ranged from 20 to 38 Wm(-2), and was generally reduced in the wet season and increased in the late dry season, coincident with seasonal variations of net radiation and soil moisture. The sites were easily divisible into two functional groups based on the seasonality of evaporation: tropical forest and savanna. At sites with an annual precipitation above 1900 mm and a dry season length less than 4 months (Manaus, Santarem and Rondonia), evaporation rates increased in the dry season, coincident with increased radiation. Evaporation rates were as high as 4.0 mm d(-1) in these evergreen or semidecidous forests. In contrast, ecosystems with precipitation less than 1700 mm and a longer dry season (Mato Grosso, Tocantins and Sao Paulo) showed clear evidence of reduced evaporation in the dry season. Evaporation rates were as low as 2.5 mm d(-1) in the transitional forests and 1 mm d(-1) in the cerrado. The controls on evapotranspiration seasonality changed along the biome gradient, with evaporative demand (especially net radiation) playing a more important role in the wetter forests, and soil moisture playing a more important role in the drier savannah sites.
Resumo:
The brown-nosed coati (Nasua nasua) is a carnivorous species found in all the Brazilian biomes, some of which are endangered areas. The aim of this work was to determine the habitat use and selection, home range and core area of N. nasua in the Cerrado biome, central region of Tocantins, Brazil. The study was carried out in an area of approximately 20 000ha from May 2000 to July 2002. A total of seven box traps were placed in the area for 13 months, three of 11 captured animals were followed and monitored by radio-tracking during 13 months. The monitoring was conducted once a day, three times a week using a car and walking through the study area (radio-tracking and visual contact). The results demonstrate that these three males used more frequently the gallery forest formation, followed by cerrado and wetlands. The use of gallery forest by these animals indicated an habitat selection (Proportion test, z=12.98, p< 0.01). Besides, adult males used the gallery forest more frequently (Fisher's exact test, p<0.01) and wetlands less frequently (Fisher's exact test, p<0.01) than juvenile males, without significant differences between animal ages for cerrado percentage of habitat use. Besides, results also showed a gallery forest selection by adult (Proportion test z= 13.62, p<0.01) and juvenile (Proportion test z=2.68, p<0.01) males, and a wetland selection by the juvenile male (Proportion test z=3.90, p<0.01). The home ranges varied from 2.20 to 7.55km2 for the Minimum Convex Polygon 100% (MCP 100%) and from 4.38 to 13.32km2 for the Harmonic Mean 95% (HM 95%). The smallest home range overlap occurred between the adult males (Nm1 and Nm3), and the greatest between the juvenile Njm2 and the adult Nm1. The average of the core area (HM 75%) for the three monitored animals represented 21.29% of the home range calculated with HM 95%. No overlap between core areas was observed for adult males, but, it was an overlap between the core area of the juvenile male and its band with that of the two adult males. The present study provides new data on core area size and frequency habitat use by adult and juvenile males of N. nasua in the Brazilian Cerrado, that may support conservation efforts. Rev. Biol. Trop. 58 (3): 1069-1077. Epub 2010 September 01.
Resumo:
This study presented data on helminth fauna of two gecko lizards, Hemidactylus agrius and Lygodactylus klugei, from Caatinga biome in northeastern Brazil. It was found four helminth species parasitizing H. agrius, cistacanth of Centrorhynchidae (Acanthocephala) and the nematodes Physalopteridae (larvae), Parapharyngodon alvarengai (Pharyngodonidae) and Skrjabinelazia sp. (Seuratidade). The host Lygodactylus klugei presented two helminth species, one individual of Mesocoelium monas (Trematoda: Mesocoeliidae) in the small intestine and one encysted larvae of Physalopteridae (Nematoda: Physalopteridae) attached at stomach wall. The lizard species showed a low prevalence and low richness of helminths. Moreover, H. agrius presented a low intensity of infection. The foraging mode, arboreal habit and a restricted composition of diet could favoring the low prevalence, low infection rates and low richness of helminths found in these geckonid host species.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)