941 resultados para Nest-site Selection
Resumo:
From 5 May 2003 to early June 2005, nest site selection of Black-necked Cranes Grits nigricollis was studied at the Ruoergai Wetland Nature Reserve (RWNR), an important breeding area for the species in China. Results showed that the crane nests only in we
Resumo:
One of the most common bee genera in the Niagara Region, the genus Ceratina (Hymenoptera: Apidae) is composed of four species, C. dupla, C. calcarata, the very rare C. strenua, and a previously unknown species provisionally named C. near dupla. The primary goal of this thesis was to investigate how these closely related species coexist with one another in the Niagara ~ee community. The first necessary step was to describe and compare the nesting biologies and life histories of the three most common species, C. dupla, C. calcarata and the new C. near dupla, which was conducted in 2008 via nest collections and pan trapping. Ceratina dupla and C. calcarata were common, each comprising 49% of the population, while C. near dupla was rare, comprising only 2% of the population. Ceratina dupla and C. near dupla both nested more commonly in teasel (Dipsacus sp.) in the sun, occasionally in raspberry (Rubus sp.) in the shade, and never in shady sumac (Rhus sp.), while C. calcarata nested most commonly in raspberry and sumac (shaded) and occasionally in teasel (sunny). Ceratina near dupla differed from both C. dupla and C. calcarata in that it appeared to be partially bivoltine, with some females founding nests very early and then again very late in the season. To examine the interactions and possible competition for nests that may be taking place between C. dupla and C. calcarata, a nest choice experiment was conducted in 2009. This experiment allowed both species to choose among twigs from all three substrates in the sun and in the shade. I then compared the results from 2008 (where bees chose from what was available), to where they nested when given all options (2009 experiment). Both C. dupla and C. calcarata had the same preferences for microhabitat and nest substrate in 2009, that being raspberry and sumac twigs in the sun. As that microhabitat and nest substrate combination is extremely rare in nature, both species must make a choice. In nature Ceratina dupla nests more often in the preferred microhabitat (sun), while C. calcarata nests in the preferred substrate (raspberry). Nesting in the shade also leads to smaller clutch sizes, higher parasitism and lower numbers of live brood in C. calcarata, suggesting that C. dupla may be outcompeting C. calcarata for the sunny nesting sites. The development and host preferences of Ceratina parasitoids were also examined. Ceratina species in Niagara were parasitized by no less than eight species of arthropod. Six of these were wasps from the superfamily Chalcidoidea (Hymenoptera), one was a wasp from the family Ichneumonidae (Hymenoptera) and one was a physogastric mite from the family Pyemotidae (Acari). Parasites shared a wide range of developmental strategies, from ichneumonid larvae that needed to consume multiple Ceratina immatures to complete development, to the species from the Eulophidae (Baryscapus) and Encyrtidae (Coelopencyrtus), in which multiple individuals completed development inside a single Ceratina host. Biological data on parasitoids is scarce in the scientific literature, and this Chapter documents these interactions for future research.
Resumo:
We examined nest site selection by Puerto Rican Parrots, a secondary cavity nester, at several spatial scales using the nest entrance as the central focal point relative to 20 habitat and spatial variables. The Puerto Rican Parrot is unique in that, since 2001, all known nesting in the wild has occurred in artificial cavities, which also provided us with an opportunity to evaluate nest site selection without confounding effects of the actual nest cavity characteristics. Because of the data limitations imposed by the small population size of this critically endangered endemic species, we employed a distribution-free statistical simulation approach to assess site selection relative to characteristics of used and unused nesting sites. Nest sites selected by Puerto Rican Parrots were characterized by greater horizontal and vertical visibility from the nest entrance, greater density of mature sierra palms, and a more westerly and leeward orientation of nest entrances than unused sites. Our results suggest that nest site selection in this species is an adaptive response to predation pressure, to which the parrots respond by selecting nest sites offering advantages in predator detection and avoidance at all stages of the nesting cycle. We conclude that identifying and replicating the “nest gestalt” of successful nesting sites may facilitate conservation efforts for this and other endangered avian species.
Resumo:
The Marbled Murrelet (Brachyramphus marmoratus) is a threatened alcid that nests almost exclusively in old-growth forests along the Pacific coast of North America. Nesting habitat has significant economic importance. Murrelet nests are extremely difficult and costly to find, which adds uncertainty to management and conservation planning. Models based on air photo interpretation of forest cover maps or assessments by low-level helicopter flights are currently used to rank presumed Marbled Murrelet nesting habitat quality in British Columbia. These rankings are assumed to correlate with nest usage and murrelet breeding productivity. Our goal was to find the models that best predict Marbled Murrelet nesting habitat in the ground-accessible portion of the two regions studied. We generated Resource Selection Functions (RSF) using logistic regression models of ground-based forest stand variables gathered at plots around 64 nests, located using radio-telemetry, versus 82 random habitat plots. The RSF scores are proportional to the probability of nests occurring in a forest patch. The best models differed somewhat between the two regions, but include both ground variables at the patch scale (0.2-2.0 ha), such as platform tree density, height and trunk diameter of canopy trees and canopy complexity, and landscape scale variables such as elevation, aspect, and slope. Collecting ground-based habitat selection data would not be cost-effective for widespread use in forestry management; air photo interpretation and low-level aerial surveys are much more efficient methods for ranking habitat suitability on a landscape scale. This study provides one method for ground-truthing the remote methods, an essential step made possible using the numerical RSF scores generated herein.
Resumo:
In order to evaluate the flying capacity and nest site selection of Angiopolybia pallens (Lepeletier, 1836), we made 17 incursions (136 hours of sample efforts) in Atlantic Rain Forest environments in Bahia state. Our data show this wasp prefers to nest on wide leaves of bushes and short trees (nests between 0.30 and 3m from the ground) placed in half-shady environments (clearings and shadowed cultivations). The logistic regression model using Quasi-Newton method provided a good description of the flying capacity observed in A. pallens (x 2 = 91.52; p≪0.001). According to the logistic regression model, the A. pallens flight autonomy is low, flying for short distances and with an effective radius of action of about 24m measured from their nests, which means a foraging area of nearly 1,800 m 2.
Resumo:
The application of scientific-based conservation measures requires that sampling methodologies in studies modelling similar ecological aspects produce comparable results making easier their interpretation. We aimed to show how the choice of different methodological and ecological approaches can affect conclusions in nest-site selection studies along different Palearctic meta-populations of an indicator species. First, a multivariate analysis of the variables affecting nest-site selection in a breeding colony of cinereous vulture (Aegypius monachus) in central Spain was performed. Then, a meta-analysis was applied to establish how methodological and habitat-type factors determine differences and similarities in the results obtained by previous studies that have modelled the forest breeding habitat of the species. Our results revealed patterns in nesting-habitat modelling by the cinereous vulture throughout its whole range: steep and south-facing slopes, great cover of large trees and distance to human activities were generally selected. The ratio and situation of the studied plots (nests/random), the use of plots vs. polygons as sampling units and the number of years of data set determined the variability explained by the model. Moreover, a greater size of the breeding colony implied that ecological and geomorphological variables at landscape level were more influential. Additionally, human activities affected in greater proportion to colonies situated in Mediterranean forests. For the first time, a meta-analysis regarding the factors determining nest-site selection heterogeneity for a single species at broad scale was achieved. It is essential to homogenize and coordinate experimental design in modelling the selection of species' ecological requirements in order to avoid that differences in results among studies would be due to methodological heterogeneity. This would optimize best conservation and management practices for habitats and species in a global context.
Resumo:
A method of selecting land in any region of Queensland for offsetting purposes is devised, employing uniform standards. The procedure first requires that any core natural asset lands, Crown environmental lands, prime urban and agricultural lands, and highly contentious sites in the region be eliminated from consideration. Other land is then sought that is located between existing large reservations and the centre of greatest potential regional development/disturbance. Using the criteria of rehabilitation (rather than preservation) plus proximity to those officially defined Regional Ecosystems that are most threatened, adjacent sites that are described as ‘Cleared’ are identified in terms of agricultural land capability. Class IV lands – defined as those ‘which may be safely used for occasional cultivation with careful management’,2 ‘where it is favourably located for special usage’,3 and where it is ‘helpful to those who are interested in industry or regional planning or in reconstruction’4 – are examined for their appropriate area, for current tenure and for any conditions such as Mining Leases that may exist. The positive impacts from offsets on adjoining lands can then be designed to be significant; examples are also offered in respect of riparian areas and of Marine Parks. Criteria against which to measure performance for trading purposes include functional lift, with other case studies about this matter reported separately in this issue. The procedure takes no account of demand side economics (financial additionality), which requires commercial rather than environmental analysis.
Resumo:
In this report an artificial neural network (ANN) based automated emergency landing site selection system for unmanned aerial vehicle (UAV) and general aviation (GA) is described. The system aims increase safety of UAV operation by emulating pilot decision making in emergency landing scenarios using an ANN to select a safe landing site from available candidates. The strength of an ANN to model complex input relationships makes it a perfect system to handle the multicriteria decision making (MCDM) process of emergency landing site selection. The ANN operates by identifying the more favorable of two landing sites when provided with an input vector derived from both landing site's parameters, the aircraft's current state and wind measurements. The system consists of a feed forward ANN, a pre-processor class which produces ANN input vectors and a class in charge of creating a ranking of landing site candidates using the ANN. The system was successfully implemented in C++ using the FANN C++ library and ROS. Results obtained from ANN training and simulations using randomly generated landing sites by a site detection simulator data verify the feasibility of an ANN based automated emergency landing site selection system.
Resumo:
This study in Western Ghats, India, investigates the relation between nesting sites of ants and a single remotely sensed variable: the Normalised Difference Vegetation Index (NDVI). We carried out sampling in 60 plots each measuring 30 x 30 m and recorded nest sites of 13 ant species. We found that NDVI values at the nesting sites varied considerably between individual species and also between the six functional groups the ants belong to. The functional groups Cryptic Species, Tropical Climate Specialists and Specialist Predators were present in regions with high NDVI whereas Hot Climate Specialists and Opportunists were found in sites with low NDVI. As expected we found that low NDVI values were associated with scrub jungles and high NDVI values with evergreen forests. Interestingly, we found that Pachycondyla rufipes, an ant species found only in deciduous and evergreen forests, established nests only in sites with low NDVI (range = 0.015 - 0.1779). Our results show that these low NDVI values in deciduous and evergreen forests correspond to canopy gaps in otherwise closed deciduous and evergreen forests. Subsequent fieldwork confirmed the observed high prevalence of P. rufipes in these NDVI-constrained areas. We discuss the value of using NDVI for the remote detection and distinction of ant nest sites.
Resumo:
Hornbills, among the largest and most threatened tropical frugivores, provide important seed dispersal services. Hornbill nest site characteristics are known primarily from wet tropical forests. Nests of the Indian grey hornbill Ocyceros birostris and Oriental pied hornbill Anthracoceros albirostris were characterized in a tropical dry forest. Despite A. albirostris being twice the size of O. birostris, few of the nest cavity attributes were different. A. albirostris nests were surrounded by higher proportion of mixed forest and lower sal forest compared to O. birostris. In this landscape, the larger A. albirostris may prefer to nest in sites with more food plants compared to the smaller O. birostris.
Resumo:
Tamarin monkeys, of the genus Saguinus, spend over half their lives at arboreal sleeping sites. The decision as to which site to use is likely to have considerable fitness consequences. These decisions about sleeping sites by three troops of golden-handed tamarin Saguinus midas midas were examined over a 9-mo period at a rainforest site in French Guiana. Data are presented on the physical nature of sleeping sites, their number, position within home ranges, and pattern of use and reuse, aspects of behaviour at retirement and egress, and predation attempts on the study troops. Cumulative plot analysis indicated that a tamarin troop used 30-40 sleeping sites in a 100-day period, approximately half of which were used very infrequently, so that consecutive reuse was never greater than three nights. Sleeping trees were superior in architectural parameters and liana weight to non-sleeping trees. There were no more sleeping sites than expected within the home range boundary region of the tamarins or in areas of overlap with the home ranges of neighbouring troops. Tamarins selected sleeping sites nearest to the last feeding site of the day on 25% of occasions. The study troops engaged in a number of activities that may reduce predation risk; raptor attacks on the study troops over 9 mo were frequent but unsuccessful. Tamarins often visited a sleeping site several hours before arrival, and were more likely to visit a site before use if they had not used it recently. The decision to select a sleeping site therefore involved knowledge of the previous frequency of use of that site.