901 resultados para Nerve-fibers
Resumo:
Diabetic peripheral neuropathy (DPN) is one of the most common long-term complications of diabetes. The accurate detection and quantification of DPN are important for defining at-risk patients, anticipating deterioration, and assessing new therapies. Current methods of detecting and quantifying DPN, such as neurophysiology, lack sensitivity, require expert assessment and focus primarily on large nerve fibers. However, the earliest damage to nerve fibers in diabetic neuropathy is to the small nerve fibers. At present, small nerve fiber damage is currently assessed using skin/nerve biopsy; both are invasive technique and are not suitable for repeated investigations.
Resumo:
This paper reviews a study to obtain baseline values for the density of myelinated nerve fibers of the chinchilla cochlea.
Resumo:
To assess the relationship between endometriotic lesions with associated nerve fibers with both pain and peritoneal fluid (PF) cytokine concentrations based on lesion location.
Resumo:
We describe an angiotensin (Ang) II-containing innervation of the kidney. Cryosections of rat, pig and human kidneys were investigated for the presence of Ang II-containing nerve fibers using a mouse monoclonal antibody against Ang II (4B3). Co-staining was performed with antibodies against synaptophysin, tyrosine 3-hydroxylase, and dopamine beta-hydroxylase to detect catecholaminergic efferent fibers and against calcitonin gene-related peptide to detect sensory fibers. Tagged secondary antibodies and confocal light or laser scanning microscopy were used for immunofluorescence detection. Ang II-containing nerve fibers were densely present in the renal pelvis, the subepithelial layer of the urothelium, the arterial nervous plexus, and the peritubular interstitium of the cortex and outer medulla. They were infrequent in central veins and the renal capsule and absent within glomeruli and the renal papilla. Ang II-positive fibers represented phenotypic subgroups of catecholaminergic postganglionic or sensory fibers with different morphology and intrarenal distribution compared to their Ang II-negative counterparts. The Ang II-positive postganglionic fibers were thicker, produced typically fusiform varicosities and preferentially innervated the outer medulla and periglomerular arterioles. Ang II-negative sensory fibers were highly varicose, prevailing in the pelvis and scarce in the renal periphery compared to the rarely varicose Ang II-positive fibers. Neurons within renal microganglia displayed angiotensinergic, catecholaminergic, or combined phenotypes. Our results suggest that autonomic fibers may be an independent source of intrarenal Ang II acting as a neuropeptide co-transmitter or neuromodulator. The angiotensinergic renal innervation may play a distinct role in the neuronal control of renal sodium reabsorption, vasomotion and renin secretion.
Resumo:
We aimed to evaluate whether nerve fibers are present in the endometrial layer of patients submitted to office hysteroscopy and their potential contribution to the pathogenesis of pain during that procedure. Through a prospective case-control study performed in tertiary centers for women's health, endometrium samples were collected during operative office hysteroscopy from 198 cycling women who previously underwent laparoscopy and/or magnetic resonance imaging investigation for infertility assessment. Samples were classified according to the degree of the pain patients experienced and scored from values ranging from 0 (absence of discomfort/pain) to 10 (intolerable pain) on a 10-cm visual analog scale (VAS). The presence of nerve fiber markers (S100, NSE, SP, VIP, NPY, NKA, NKB, NKR1, NKR2, and NKR3) in the endometrium was also evaluated by morphologic and immunohistochemical analyses. We found that S-100, NSE, NKR1, NK-A, NK-B, VIP, and NPY, were immunolocalized in samples of endometrium, in significantly (P < .01, for all) higher levels in samples collected from patients with VAS score > 5 (group A) than ≤ 5 (group B) and significantly (P < .0001 for all) positively correlated with VAS levels. A statistically significant (P = .018) higher prevalence of endometriosis and/or adenomyosis was depicted in patients of group A than group B. Data from the present study led us to conclude that nerve fibers are expressed at the level of the functional layer of the endometrium and may contribute to pain generation during office hysteroscopy, mainly in women affected by endometriosis and adenomyosis.
Resumo:
The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 MΩ), and short time constants (about 200 μsec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs.
Resumo:
Purpose. To measure the increase in tear secretion evoked by selective stimulation of the different populations of sensory receptors of the cornea and conjunctiva by using moderate and intense mechanical, chemical, and cold stimuli. Methods. Six healthy subjects participated in the study. Tear secretion was measured in both eyes by the Schirmer’s test conducted under control conditions and after stimulation of the center of the cornea and the temporal conjunctiva with a gas esthesiometer. Mechanical stimulation consisted in three pulses of 3 seconds’ duration of warmed air (at 34°C on the eye surface) applied at moderate (170 mL/min) and high (260 mL/min) flow rates. Cold thermal stimulation was made with cooled air that produced a corneal temperature drop of −1°C or −4.5°C. Chemical (acidic) stimulation was performed with a jet of gas containing a mixture of 80% CO2 in air. Results. The basal volume of tear secretion increased significantly (P < 0.05, paired t-test) after stimulation of the cornea with high-flow mechanical stimuli (260 mL/min), intense cooling pulses (−4.5°C), and chemical stimulation (80% CO2). The same stimuli were ineffective when applied to the conjunctiva. Moderate mechanical (170 mL/min) and cold (−1°C) stimulation of the cornea or the conjunctiva did not change significantly the volume of tear secretion. Conclusions. Reflex tear secretion caused by corneal stimulation seems to be chiefly due to activation of corneal polymodal nociceptors, whereas selective excitation of corneal mechanonociceptors or cold receptors appears to be less effective in evoking an augmented lacrimal secretion. Conjunctival receptors stimulated at equivalent levels do not evoke an increased tear secretion.
Resumo:
To develop a rapid optimized technique of wide-field imaging of the human corneal subbasal nerve plexus. A dynamic fixation target was developed and, coupled with semiautomated tiling software, a rapid method of capturing and montaging multiple corneal confocal microscopy images was created. To illustrate the utility of this technique, wide-field maps of the subbasal nerve plexus were produced in 2 participants with diabetes, 1 with and 1 without neuropathy. The technique produced montages of the central 3 mm of the subbasal corneal nerve plexus. The maps seem to show a general reduction in the number of nerve fibers and branches in the diabetic participant with neuropathy compared with the individual without neuropathy. This novel technique will allow more routine and widespread use of subbasal nerve plexus mapping in clinical and research situations. The significant reduction in the time to image the corneal subbasal nerve plexus should expedite studies of larger groups of diabetic patients and those with other conditions affecting nerve fibers. The inferior whorl and the surrounding areas may show the greatest loss of nerve fibers in individuals with diabetic neuropathy, but this should be further investigated in a larger cohort.
Resumo:
Recent emergence of human connectome imaging has led to a high demand on angular and spatial resolutions for diffusion magnetic resonance imaging (MRI). While there have been significant growths in high angular resolution diffusion imaging, the improvement in spatial resolution is still limited due to a number of technical challenges, such as the low signal-to-noise ratio and high motion artifacts. As a result, the benefit of a high spatial resolution in the whole-brain connectome imaging has not been fully evaluated in vivo. In this brief report, the impact of spatial resolution was assessed in a newly acquired whole-brain three-dimensional diffusion tensor imaging data set with an isotropic spatial resolution of 0.85 mm. It was found that the delineation of short cortical association fibers is drastically improved as well as the definition of fiber pathway endings into the gray/white matter boundary-both of which will help construct a more accurate structural map of the human brain connectome.
Resumo:
The purpose of this study was to define pathological abnormalities in the peripheral nerve of a large animal model of long-duration type 1 diabetes and also to determine the effects of treatment with sulindac. Detailed morphometric studies were performed to define nerve fiber and endoneurial capillary pathology in 6 control dogs, 6 type 1 diabetic dogs treated with insulin, and 6 type 1 diabetic dogs treated with insulin and sulindac for 4 years. Myelinated fiber and regenerative cluster density showed a non-significant trend toward a reduction in diabetic compared to control animals, which was prevented by treatment with sulindac. Unmyelinated fiber density did not differ among groups. However, diabetic animals showed a non-significant trend toward an increase in axon diameter (p <0.07), with a shift of the size frequency distribution towards larger axons, which was not prevented by treatment with sulindac. Endoneurial capillary density and luminal area showed a non-significant trend toward an increase in diabetic animals, which was prevented with sulindac treatment. Endoneurial capillary basement membrane area was significantly increased (p <0.05) in diabetic animals, but was not prevented with sulindac treatment. We conclude that the type 1 diabetic dog demonstrates minor structural abnormalities in the nerve fibers and endoneurial capillaries of the sciatic nerve, and treatment with sulindac ameliorates some but not all of these abnormalities.