15 resultados para Nephila plumipes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The orb-web spiders are polyphagous animals in which the web plays a very important role in the capture of preys; oily droplets usually cover the capture-web of the spider Nephila clavipes and seem to be of great importance for prey capture. The knowledge of the chemical composition of these droplets is necessary to understand the function of this adhesive material in web mechanics and prey capture. A novel subclass of spider toxins, tetrahydro-beta-carboline, was identified among the weaponry of compounds present inside of oily droplets. This type of alkaloid is not common among the natural compounds of spider toxins. Apparently, when the prey arthropods get caught by the spider web, their bodies are covered with many adhesive oily droplets, which disrupt delivering the tetrahydro-beta-carboline to the direct contact with the prey integument. Toxicity assays demonstrated a potent lethal effect of the alkaloid toxin to the spider preys; topical applications of the teirahydro-beta-carboline at first caused clear signs of neurotoxicity, followed by the death of preys. The structure of the major component, a tetrahydro-beta-carboline, among the alkaloid toxins was elucidated by means of UV spectrophotometry, ESI mass spectrometry, H-1-NMR spectroscopy, and high-resolution mass spectrometry. The structure of the natural toxin was determined as 1-(2-guanidinoethyl)-1,2,3,4-tetrahydro-6-hydroxymethyl)-beta-carboline; the investigation of the pharmacological properties and neurotoxic actions of this compound may be used in the future as reference for the development of new drugs to be applied at level of pest control in agriculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three bradykinin-related peptides (nephilakinins-I to -III) and bradykinin itself were isolated from the aqueous washing extract of the capture web of the spider Nephila clavipes by gel permeation chromatography on a Sephacryl S-100 column, followed by chromatography in a Hi-Trap Sephadex-G25 Superfine column. The novel peptides occur-red in low concentrations and were sequenced through ESI-MS/MS analysis: nephilakinin-I (G-P-N-P-G-F-S-P-F-R-NH2), nephilakinin-Il (E-A-P-P-G-F-S-P-F-R-NH2) and nephilakinin-III (P-S-P-P-G-F-S-P-F-R-NH2)- Synthetic peptides replicated the novel bradykinin-related peptides, which were submitted to biological characterizations. Nephilakinins were shown to cause constriction on isolated rat ileum preparations and relaxation on rat duodenum muscle preparations at amounts higher than bradykinin; apparently these peptides constitute B-2-type agonists of ileal and duodenal smooth muscles. All peptides including the bradykinin were moderately lethal to honeybees. These bradykinin peptides may be related to the predation of insects by the webs of N. clauipes. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capture web of N. clavipes presents viscous droplets, which play important roles in web mechanics and prey capture. By using scanning and transmission electron microscopy, it was demonstrated that the web droplets are constituted of different chemical environments, provided by the existence both of an aqueous and a lipid layer, which, in turn, present a suspension of tenths of vesicles containing polypeptides and/or tipids. GC/EI-MS Analysis of the contents of these vesicles led to the identification of some saturated fatty acids, such as decanoic acid, undecanoic acid, dodecanoic acid, tetradecanoic acid, octadecanoic acid, and icosanoic acid, while other components were unsaturated fatty acids, such as (Z)-tetradec-9-enoic acid, (Z)-octadec-9-enoic acid, and (Z)-icosa-11-enoic acid; and polyunsaturated fatty acids like (9Z,12Z)-octadeca-9,12-dienoic acid, (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid, and (11Z,14Z)-icosa-11,14-dienoic acid. Toxic proteins such as calcium-activated proteinase and metalloproteinase jararhagin-like precursor were also identified by using a proteomic approach, indicating the possible involvement of these enzymes in the pre-digestion of spiders' preys web-captured. Apparently, the mixture of fatty acids are relatively toxic to insects by topical application (LD50 64.3 +/- 7.6 ng mg(-1) honeybee), while the proteins alone present no topical effect; however, when injected into the prey-insects, these proteins presented a moderate toxicity (LD50 40.3 +/- 4.8 ng mg(-1) honeybee); the mixture of fatty acids and proteins is very toxic to the preys captured by the web droplets of the viscid spiral of Nephila clavipes when topically applied on them (LD50 14.3 +/- 1.8ng mg(-1) honeybee).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel chemical subclass of toxin, [1-(3-diazenylphenyl) ethanol]iron, was identified among the compounds present in the web of the spider Nephila clavipes. This type of compound is not common among natural products, mainly in spider-venom toxins; it was shown to be a potent paralytic and/or lethal toxin applied by the spider over its web to ensure prey capture only by topical application. The structure was elucidated by means of ESI mass spectrometry, H-1-NMR spectroscopy, high-resolution (HR) mass spectrometry, and ICP spectrometry. The structure of [1-( 3-diazenylphenyl)ethanol] iron and the study of its insecticidal action may be used as a starting point for the development of new drugs for pest control in agriculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As espécies de Nephila estão incluídas na família Nephilidae que pertence ao grupo das aranhas Entelegynae, o qual é considerado filogeneticamente derivado em relação aos outros grupos da ordem Araneae. Análises citogenéticas realizadas nas aranhas Entelegynae com técnicas de coloração convencional, têm mostrado que a maioria das espécies possui uniformidade cariotípica principalmente em relação a morfologia telo-acrocêntrica dos cromossomos e sistema cromossômico sexual (SCS) do tipo X1X20/X1X1X2X2. Além disso, estas análises têm demonstrado que algumas famílias de Entelegynae também possuem uniformidade cariotípica concernente ao número diplóide de cromossomos na maioria das suas espécies. Por outro lado, o emprego adicional de técnicas de coloração diferencial de regiões cromossômicas específicas em alguns representantes de Entelegynae têm revelado características que podem ser usadas para determinar os mecanismos envolvidos na evolução cromossômica e na diferenciação cariotípica de espécies relacionadas. Contudo, poucas espécies de Entelegynae tiveram seus cariótipos analisados com técnicas de coloração diferencial. O Brasil possui aproximadamente 4.000 espécies de Araneae descritas taxonomicamente; entretanto apenas cerca de 20 destas foram analisadas do ponto de vista citogenético. Considerando estas informações, o objetivo deste trabalho foi investigar o cariótipo de duas espécies de Nephila, Nephila clavipes e Nephila sexpunctata, com técnicas de coloração convencional e diferencial para determinar o número diplóide, a morfologia cromossômica, o tipo de SCS, e o padrão de distribuição da heterocromatina constitutiva (bandas C) e das regiões organizadoras de nucléolo (RONs) ativas, e comparar os dados obtidos com aqueles de espécies relacionadas, para estabelecer os mecanismos de evolução cromossômica...(Resumo completo, clicar acesso eletrônico abaixo)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical behavior and microstructure of minor ampullate gland silk (miS) of two orb-web spinning species, Argiope trifasciata and Nephila inaurata, were extensively characterized, enabling detailed comparison with other silks. The similarities and differences exhibited by miS when compared with the intensively studied major ampullate gland silk (MAS) and silkworm (Bombyx mori) silk offer a genuine opportunity for testing some of the hypotheses proposed to correlate microstructure and tensile properties in silk. In this work, we show that miSs of different species show similar properties, even when fibers spun by spiders that diverged over 100 million years are compared. The tensile properties of miS are comparable to those of MAS when tested in air, significantly in terms of work to fracture, but differ considerably when tested in water. In particular, miS does not show a supercontraction effect and an associated ground state. In this regard, the behavior of miS in water is similar to that of B. mori silk, and it is shown that the initial elastic modulus of both fibers can be explained using a common model. Intriguingly, the microstructural parameters measured in miS are comparable to those of MAS and considerably different from those found in B. mori. This fact suggests that some critical microstructural information is still missing in our description of silks, and our results suggest that the hydrophilicity of the lateral groups or the large scale organization of the sequences might be routes worth exploring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

N'-coumaroyl spermidine (NlCSpd) is a plant derived chemical which is proposed to belong to a class of low molecular weight neuroactive substances called phenolic polyamines. NlCSpd is stnicturally similar to glutamate receptor blocking toxins found in certain spiders and wasps, such as JSTX-3 and NSTX-3 found in Nephila spiders. The goal of the present study was to determine if plant-derived phenolic polyamines act like other structurally related chemicals found in Arthropod venoms, such as JSTX-3, and whether they can be classified in the same pharmacological group as the spider and wasp toxins. A comparison was made to determine the relative potencies of various phenolic polyamines fi-om plants and insect venoms. This comparison was done by measuring the effect of various concentrations ofNlCSpd on the amplitude of excitatory postsynaptic potentials (EPSPs) elicited in muscle of the crayfish Proccanbarus clarkii. NlCSpd was also tested on L-glutamate induced potentials to determine if a postsynaptic component to sj^naptic block occurs. NlCSpd and an analogue with an a longer polyamine chain, NlCSpm, blocked EPSPs in a dose dependent manner, NlCSpd having an IC50 of lOOnM. NlCSpd also blocked L-glutamate induced potentials. The two main components of the NlCSpd molecule alone are insufficient for activity. NlCSpd acts postsynaptically by interfering with crayfish glutamatergic synaptic transmission, likely blocking glutamate receptors by interacting with the same site(s) as other phenolic polyamines. Certain moieties on the polyamines molecule are necessary for activity while others are not.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mario Sergio Palma, Yasuhiro Itagaki, Tsuyoshi Fujita, Hideo Naoki and Terumi Nakajima. Structural characterization of a new acylpolpaminetoxin from the venom of Brazilian garden spider Nephilengys: cruentata. Toxicon 36, 455-493, 1998.-The use of mass spectrometry, in which high-energy CID and charge remote fragmentation both of protonated and sodium-attached molecular ions was applied, afforded the structural elucidation of a new acylgolyaminetoxin with M-W= 801 da from the venom of the Brazilian garden spider Nephilengys cruentata. In spite of having the same M-W of the NPTX-2, previously described in the venom of the Joro spider Nephila clavata, neither toxins are isomers. In order to differentiate them by using the most usual nomenclature, the new toxin was named NPTX-801C and the NPTX-2 was renamed to NPTX-801E. Both toxins have as common structure the 4-hydroxyindole-3-acetyl-asparaginyl-cadaveryl moiety in their molecules and their structure may be represented in a simplified way: NPTX-801E is HO-indole-Asn-Cad-Pta-Orn-Arg and NPTX-801C is HO-indole-Asn-Cad-Gly-Put-Pta-Pta. (C) 1998 Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Joro spider toxin (JSTX-3), derived from Nephila clavata, has been found to block glutamate excitatory activity. Epilepsy has been studied in vitro, mostly on rat hippocampus, through brain slices techniques. The aim of this study is to verify the effect of the JSTX-3 on the epileptiform activity induced by magnesium-free medium in rat CA1 hippocampal neurons. Experiments were performed on hippocampus slices of control and pilocarpine-treated Wistar rats, prepared and maintained in vitro. Epileptiform activity was induced through omission of magnesium from the artificial cerebrospinal fluid (0-Mg2+ ACSF) superfusate and iontophoretic application of N-methyl-D-aspartate (NMDA). Intracellular recordings were obtained from CA] pyramidal neurons both of control and epileptic rats. Passive membrane properties were analyzed before and after perfusion with the 0-Mg2+ ACSF and the application of toxin JSTX-3. During the ictal-like activity, the toxin JSTX-3 was applied by pressure ejection, abolishing this activity. This effect was completely reversed during the washout period 2. when the slices were formerly perfused with artificial cerebrospinal fluid (ACSF) and again with 0-Mg2+ ACSF. Our results suggest that the toxin JSTX-3 is a potent blocker of induced epileptiform activity. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In the field of Plastic Reconstructive Surgery the development of new innovative matrices for skin repair is in urgent need. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, but not exert a pathological immune response. Spider dragline silk from Nephila spp meets these demands to a large extent. Methodology/Principal Findings: Native spider dragline silk, harvested directly out of Nephila spp spiders, was woven on steel frames. Constructs were sterilized and seeded with fibroblasts. After two weeks of cultivating single fibroblasts, keratinocytes were added to generate a bilayered skin model, consisting of dermis and epidermis equivalents. For the next three weeks, constructs in co-culture were lifted on an originally designed setup for air/liquid interface cultivation. After the culturing period, constructs were embedded in paraffin with an especially developed program for spidersilk to avoid supercontraction. Paraffin cross-sections were stained in Haematoxylin & Eosin (H&E) for microscopic analyses. Conclusion/Significance: Native spider dragline silk woven on steel frames provides a suitable matrix for 3 dimensional skin cell culturing. Both fibroblasts and keratinocytes cell lines adhere to the spider silk fibres and proliferate. Guided by the spider silk fibres, they sprout into the meshes and reach confluence in at most one week. A well-balanced, bilayered cocultivation in two continuously separated strata can be achieved by serum reduction, changing the medium conditions and the cultivation period at the air/liquid interphase. Therefore spider silk appears to be a promising biomaterial for the enhancement of skin regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Several materials have been used for tissue engineering purposes, since the ideal matrix depends on the desired tissue. Silk biomaterials have come to focus due to their great mechanical properties. As untreated silkworm silk has been found to be quite immunogenic, an alternative could be spider silk. Not only does it own unique mechanical properties, its biocompatibility has been shown already in vivo. In our study, we used native spider dragline silk which is known as the strongest fibre in nature. Methodology/Principal Findings: Steel frames were originally designed and manufactured and woven with spider silk, harvesting dragline silk directly out of the animal. After sterilization, scaffolds were seeded with fibroblasts to analyse cell proliferation and adhesion. Analysis of cell morphology and actin filament alignment clearly revealed adherence. Proliferation was measured by cell count as well as determination of relative fluorescence each after 1, 2, 3, and 5 days. Cell counts for native spider silk were also compared with those for trypsin-digested spider silk. Spider silk specimens displayed less proliferation than collagen-and fibronectin-coated cover slips, enzymatic treatment reduced adhesion and proliferation rates tendentially though not significantly. Nevertheless, proliferation could be proven with high significance (p<0.01). Conclusion/Significance: Native spider silk does not require any modification to its application as a biomaterial that can rival any artificial material in terms of cell growth promoting properties. We could show adhesion mechanics on intracellular level. Additionally, proliferation kinetics were higher than in enzymatically digested controls, indicating that spider silk does not require modification. Recent findings concerning reduction of cell proliferation after exposure could not be met. As biotechnological production of the hierarchical composition of native spider silk fibres is still a challenge, our study has a pioneer role in researching cellular mechanics on native spider silk fibres.