976 resultados para Neotropical fishes
Resumo:
The present paper reports nuclear DNA content in 30 Neotropical freshwater fish species and summarizes the data on other Neotropical species presented in the literature. Among Neotropical fishes, the nuclear DNA content ranges from 1.04 ± 0.09 pg/nucleus in Corydoras cf. simulatus (2n = 62) to 248.0 pg/nucleus in Lepidosiren paradoxa (2n = 38). A general analysis of the data obtained in the present study for each species showed that DNA measurements were practically constant at the individual level, while significant differences were observed among individuals of the same population. This observation was valid for all species analyzed and was more evident in those species that presented other karyotypic particularities such as sex chromosomes or supernumerary chromosomes. The importance of changes in nuclear DNA content in the evolutionary process of Neotropical fishes is discussed.
Resumo:
During the evolutionary process of the sex chromosomes, a general principle that arises is that cessation or a partial restriction of recombination between the sex chromosome pair is necessary. Data from phylogenetically distinct organisms reveal that this phenomenon is frequently associated with the accumulation of heterochromatin in the sex chromosomes. Fish species emerge as excellent models to study this phenomenon because they have much younger sex chromosomes compared to higher vertebrates and many other organisms making it possible to follow their steps of differentiation. In several Neotropical fish species, the heterochromatinization, accompanied by amplification of tandem repeats, represents an important step in the morphological differentiation of simple sex chromosome systems, especially in the ZZ/ZW sex systems. In contrast, multiple sex chromosome systems have no additional increase of heterochromatin in the chromosomes. Thus, the initial stage of differentiation of the multiple sex chromosome systems seems to be associated with proper chromosomal rearrangements, whereas the simple sex chromosome systems have an accumulation of heterochromatin. In this review, attention has been drawn to this contrasting role of heterochromatin in the differentiation of simple and multiple sex chromosomes of Neotropical fishes, highlighting their surprising evolutionary dynamism.
Resumo:
The family Loricariidae, with about 683 species, is one the largest fish families in the world. The subfamily Hypostominae was recently reviewed and is now divided in five tribes. With the main objective of contributing to a better understanding of the relationships of the members of the subfamily Hypostominae, cytogenetic analyses were conducted in seven species (three Hypostomini, three Pterygoplichthini and two Ancistrini) from Brazil and Venezuela. In Pterygoplichthini, all species show 2n = 52 chromosomes. In Hypostomini Hypostomus ancistroides has 2n = 68, H. regani 2n = 72 and Hypostomus goyazensis 2n = 72 chromosomes. In Ancistrini Ancistrus n. sp. 1 has 2n = 39/40 with a sex chromosome system of the type XX/X0, which is a novelty for neotropical fishes, and Ancistrus n. sp. 2 has 2n = 52 chromosomes. Six species have single Ag-NORs and two multiple Ag-NORs. The possible cytogenetic relationships among the species of Hypostominae are discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
There are few reports on the genomic organization of 5S rDNA in fish species. To characterize the 5S rDNA nucleotide sequence and chromosomal localization in the Neotropical fishes of the genus Brycon, 5S rDNA copies from seven species were generated by PCR. The nucleotide sequences of the coding region (5S rRNA gene) and the nontranscribed spacer (NTS) were determined, revealing that the 5S rRNA genes were highly conserved, while the NTSs were widely variable among the species analyzed. Moreover, two classes of NTS were detected in each species, characterized by base substitutions and insertions-deletions. Using fluorescence in situ hybridization (FISH), two 5S rDNA chromosome loci that could be related to the two 5S rDNA NTS classes were observed in at least one of the species studied. 5S rDNA sequencing and chromosomal localization permitted the characterization of Brycon spp. and suggest a higher similarity among some of them. The data obtained indicate that the 5S rDNA can be an useful genetic marker for species identification and evolutionary studies.
Resumo:
A general survey of the occurrence of morphologically differentiated sex chromosomes in the neotropical freshwater fishes is presented. The total number of 32 occurrences involving simple XX-XY and ZZ-ZW, and multiple X1X2Y, XY1Y2 and ZW1W2 sex chromosome systems is described, with comments on the aspects of sex chromosome evolution in this fish fauna. The occurrence of different sex chromosome systems in related species of the same genus, or in different populations of the same nominal species, involving male and sometimes female heterogamety, and differences in the molecular composition of sex-linked heterochromatin, are considered as indicative of the early stage of sex chromosomes evolution in fish.
Resumo:
•Relationships of Cheirodontinae based on a broad taxonomic sample.•Results reject the monophyly of Cheirodontinae as previously conceived.•Exclusion of Amazonspinther and Spintherobolus from the subfamily Cheirodontinae.•The removal of Leptagoniates pi of the genus Leptagoniates and inclusion in Cheirodontinae.•Division of Cheirodontinae in three newly defined monophyletic tribes. Characidae is the most species-rich family of freshwater fishes in the order Characiformes, with more than 1000 valid species that correspond to approximately 55% of the order. Few hypotheses about the composition and internal relationships within this family are available and most fail to reach an agreement. Among Characidae, Cheirodontinae is an emblematic group that includes 18 genera (1 fossil) and approximately 60 described species distributed throughout the Neotropical region. The taxonomic and systematic history of Cheirodontinae is complex, and only two hypotheses about the internal relationships in this subfamily have been reported to date. In the present study, we test the composition and relationships of fishes assigned to Cheirodontinae based on a broad taxonomic sample that also includes some characid incertae sedis taxa that were previously considered to be part of Cheirodontinae. We present phylogenetic analyses of a large molecular dataset of mitochondrial and nuclear DNA sequences. Our results reject the monophyly of Cheirodontinae as previously conceived, as well as the tribes Cheirodontini and Compsurini, and the genera Cheirodon, Compsura, Leptagoniates, Macropsobrycon, Odontostilbe, and Serrapinnus. On the basis of these results we propose: (1) the exclusion of Amazonspinther and Spintherobolus from the subfamily Cheirodontinae since they are the sister-group of all remaining Characidae; (2) the removal of Macropsobrycon xinguensis of the genus Macropsobrycon; (3) the removal of Leptagoniates pi of the genus Leptagoniates; (4) the inclusion of Leptagoniates pi in the subfamily Cheirodontinae; (5) the removal of Cheirodon stenodon of the genus Cheirodon and its inclusion in the subfamily Cheirodontinae under a new genus name; (6) the need to revise the polyphyletic genera Compsura, Odontostilbe, and Serrapinnus; and (7) the division of Cheirodontinae in three newly defined monophyletic tribes: Cheirodontini, Compsurini, and Pseudocheirodontini. Our results suggest that our knowledge about the largest Neotropical fish family, Characidae, still is incipient. © 2013 Elsevier Inc..
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A chromosomal mosaic has at least two cell lineages with different karyotypes derived from a single zygote and the karyotype alteration can be numeric or structural as well. In the present paper were detected a numeric chromosomal alterations in a single specimen of Thichomycterus paolence from the Quinta stream (Itatinga, state of São Paulo, Brazil). In a total of 61 analysed metaphases, besides the normal chromosome number of this species (2n=54), other four chromosomal sets characterized by 2n=55 (54 plus a microchromosome), 2n=55 (54 plus a small subtelocentric chromosome), 2n=56 (54 plus a subtelocentric and a microchromosome) and 2n=57 (54 plus a subtelocentric pair and a microchromosome) have been detected. The mechanisms that have originated those abnormal karyotypical constitutions is discussed.