7 resultados para Neotenics
Resumo:
Reticulitermes santonensis is a subterranean termite that invades urban areas in France and elsewhere where it causes damage to human-built structures. We investigated the breeding system, colony and population genetic structure, and mode of dispersal of two French populations of R. santonensis. Termite workers were sampled from 43 and 31 collection points, respectively, from a natural population in west-central France (in and around the island of Oleron) and an urban population (Paris). Ten to 20 workers per collection point were genotyped at nine variable microsatellite loci to determine colony identity and to infer colony breeding structure. There was a total of 26 colonies, some of which were spatially expansive, extending up to 320 linear metres. Altogether, the analysis of genotype distribution, F-statistics and relatedness coefficients suggested that all colonies were extended families headed by numerous neotenics (nonwinged precocious reproductives) probably descended from pairs of primary (winged) reproductives. Isolation by distance among collection points within two large colonies from both populations suggested spatially separated reproductive centres with restricted movement of workers and neotenics. There was a moderate level of genetic differentiation (F(ST) = 0.10) between the Oleron and Paris populations, and the number of alleles was significantly higher in Oleron than in Paris, as expected if the Paris population went through bottlenecks when it was introduced from western France. We hypothesize that the diverse and flexible breeding systems found in subterranean termites pre-adapt them to invade new or marginal habitats. Considering that R. santonensis may be an introduced population of the North American species R. flavipes, a breeding system consisting primarily of extended family colonies containing many neotenic reproductives may facilitate human-mediated spread and establishment of R. santonensis in urban areas with harsh climates.
Resumo:
The hallmark of social insects is their caste system: reproduction is primarily monopolized by queens, whereas workers specialize in the other tasks required for colony growth and survival. Pheromones produced by reining queens have long been believed to be the prime factor inhibiting the differentiation of new reproductive individuals. However, there has been very little progress in the chemical identification of such inhibitory pheromones. Here we report the identification of a volatile inhibitory pheromone produced by female neotenics (secondary queens) that acts directly on target individuals to suppress the differentiation of new female neotenics and identify n-butyl-n-butyrate and 2-methyl-1-butanol as the active components of the inhibitory pheromone. An artificial pheromone blend consisting of these two compounds had a strong inhibitory effect similar to live neotenics. Surprisingly, the same two volatiles are also emitted by eggs, playing a role both as an attractant to workers and an inhibitor of reproductive differentiation. This dual production of an inhibitory pheromone by female reproductives and eggs probably reflects the recruitment of an attractant pheromone as an inhibitory pheromone and may provide a mechanism ensuring honest signaling of reproductive status with a tight coupling between fertility and inhibitory power. Identification of a volatile pheromone regulating caste differentiation in a termite provides insights into the functioning of social insect colonies and opens important avenues for elucidating the developmental pathways leading to reproductive and nonreproductive castes.
Resumo:
The termite Coptotermes gestroi (Wasmann 1896) ( Rhinotermitidae: Coptotermitinae) is an exotic species in Brazil and information concerning its reproductive developmental biology is scarce. We induced the formation of neotenics in laboratory colonies through orphaning experiments. Orphaning experiments were conducted in three-year old colonies of C. gestroi kept under laboratory conditions. After three months, eight nymphoid neotenics were observed in one colony after queen removal. Histological analysis showed that these neotenics were non-functional. The results suggest that these individuals may have arisen from the first nymphal instar (N1) or from an early N1 instar after one or two larval moults. Neotenics also were recorded on two incipient colonies of C. gestroi that lost the queen naturally.
Resumo:
In this paper we examine the potential of the termites Armitermes euamignathus Silvestri: 1901 and Embiratermes festivellus (Silvestri, 1901) (Isoptera, Termitidae, Nasutitermitinae) to produce neotenics experimentally. Three nests of the mound-building termite A. euamignathus, from the Brazilian cerrado, had their primary queens removed in August 1994. After 12 months, only one mound survived; it had a normal appearance. In this healthy, orphaned colony we found the primary king, six physogastric nymphoid female replacement reproductives, two ergatoid female replacement reproductives, 46 nymphs, several presoldiers, soldiers, workers, larvae and many eggs. These data show that neotenics in A. euamignathus may originate from both workers and nymphs, but nymphoids are produced in larger numbers. The biometric study of nymphs and nymphoids suggests that these brachypterous neotenics were derived from third instar nymphs after a single moult or from four instar nymphs after a reduction of wing bud length. A piece of an E. festivellus nest with some third instar nymphs, soldiers and workers was kept under laboratory conditions. After 12 months, the whole experimental subcolony was examined and appeared to contain two pigmented nymphoid females, two pigmented nymphoid males, only one larva, seven nymphs of the same instar, 148 workers, five soldiers and many eggs. These results also indicate the capacity of the termite E. festivellus to produce nymphoid neotenics. These neotenic females were laying eggs, but they were not physogastric after a year, unlike some nymphoids of the same species collected from natural colonies.
Resumo:
The introduction of Coptotermes havilandi in Brazil and some aspects of its biology are reviewed. We also describe an aerial principal nest collected from the 15th floor of a high-rise building and its subsidiary nest collected from the 14th floor of the same building. The population of the principal nest consisted of one imaginal physogastric queen, one imaginal king, 20 nymphoid neotenics (14 females and 6 males), 188 nymphs, many workers, presoldiers, soldiers and larvae. The population of the subsidiary nest consisted of 32 nymphoid neotenics (all females), alates, 2 preneotenics, some larvae and nymphs, many workers, presoldiers and soldiers. These neotenics were larger than those found in the principal nest. No eggs were found in either nest. A morphometric analysis of the nymphs and nymphoids was carried out and the morphology of the neotenics and of the imaginai reproductives is described.
Resumo:
The termite Coptotermes gestroi (Wasmann) (Rhinotermitidae) is an exotic species in Brazil. This species forms colonies headed by primary reproductives, however, non-functional neotenics are commonly found even in the presence of the imaginai pair. The presence of non-functional neotenics in C. gestroi colonies may correspond to a strategy of this termite species for rapid colonization in foreign areas, instead of a response to chemical control methods.
Resumo:
Recently shown in some termites, Asexual Queen Succession (AQS) is a reproductive strategy in which the primary queen is replaced by numerous parthenogenetically-produced neotenic queens that mate with the primary king. In contrast, the workforce and alate dispersers are produced sexually. If the primary king is replaced by a sexually-produced neotenic son, the matings between neotenic male and females beget asymmetries in the reproductive value of alates, promoting a female-biased alate sex-ratio. Cavitermes tuberosus (Termitidae: Termitinae) is a soil-feeding tropical species, which shows parthenogenetically-produced neotenics and an AQS syndrome. Our work aims to characterize the reproductive strategies in this species by determining (i) the developmental scheme, (ii) the genetic origin of sexuals, (iii) the level of genetic structure (analysis of 65 nests distributed in 14 sites) and (iv) the alate sex-ratio.Our results show that (i) neotenic females develop from the third or fourth nymphal instar; (ii) the majority of neotenic females (82%) are parthenogenetically-produced while only 2% of female alates are so; (iii) nests are differentiated within sites, indicating that the foundation of new nests mainly occurs by nuptial flights; (iv) numerical sex-ratio of alate-destined sexuals is balanced (SRN=0.509, IC95%=0.497-0.522) while investment sex-ratio is slightly female-biased (SRE=0.529, IC95%=0.517-0.542). Altogether, our results demonstrate AQS and its implications in C. tuberosus, and reveal particularities compared to other species in which AQS has been demonstrated: neotenic-headed nests are less frequent than primary-headed ones and neotenic females never become physogastric. AQS is found in various ecological contexts and seems phylogenetically more widespread than previously thought. This strategy shows some evolutionary advantages but these seem to differ depending on species.