969 resultados para Negative dimension integration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present a possible way to relate the method of covariantizing the gauge-dependent pole and the negative dimensional integration method for computing Feynman integrals pertinent to the light-cone gauge fields. Both techniques are applicable to the algebraic light-cone gauge and dispense with prescriptions to treat the characteristic poles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feynman diagrams are the best tool we have to study perturbative quantum field theory. For this very reason the development of any new technique that allows us to compute Feynman integrals is welcome. By the middle of the 1980s, Halliday and Ricotta suggested the possibility of using negative-dimensional integrals to tackle the problem. The aim of this work is to revisit the technique as such and check on its possibilities. For this purpose, we take a box diagram integral contributing to the photon-photon scattering amplitude in quantum electrodynamics using the negative-dimensional integration method. Our approach enables us to quickly reproduce the known results as well as six other solutions as yet unknown in the literature. These six new solutions arise quite naturally in the context of negative-dimensional integration method, revealing a promising technique to handle Feynman integrals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negative dimensional integration method (NDIM) is a technique to deal with D-dimensional Feynman loop integrals. Since most of the physical quantities in perturbative Quantum Field Theory (pQFT) require the ability of solving them, the quicker and easier the method to evaluate them the better. The NDIM is a novel and promising technique, ipso facto requiring that we put it to test in different contexts and situations and compare the results it yields with those that we already know by other well-established methods. It is in this perspective that we consider here the calculation of an on-shell two-loop three point function in a massless theory. Surprisingly this approach provides twelve non-trivial results in terms of double power series. More astonishing than this is the fact that we can show these twelve solutions to be different representations for the same well-known single result obtained via other methods. It really comes to us as a surprise that the solution for the particular integral we are dealing with is twelvefold degenerate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The negative-dimensional integration method (NDIM) seems to be a very promising technique for evaluating massless and/or massive Feynman diagrams. It is unique in the sense that the method gives solutions in different regions of external momenta simultaneously. Moreover, it is a technique whereby the difficulties associated with performing parametric integrals in the standard approach are transferred to a simpler solving of a system of linear algebraic equations, thanks to the polynomial character of the relevant integrands. We employ this method to evaluate a scalar integral for a massless two-loop three-point vertex with all the external legs off-shell, and consider several special cases for it, yielding results, even for distinct simpler diagrams. We also consider the possibility of NDIM in non-covariant gauges such as the light-cone gauge and do some illustrative calculations, showing that for one-degree violation of covariance (i.e. one external, gauge-breaking, light-like vector n μ) the ensuing results are concordant with the ones obtained via either the usual dimensional regularization technique, or the use of the principal value prescription for the gauge-dependent pole, while for two-degree violation of covariance - i.e. two external, light-like vectors n μ, the gauge-breaking one, and (its dual) n * μ - the ensuing results are concordant with the ones obtained via causal constraints or the use of the so-called generalized Mandelstam-Leibbrandt prescription. © 1999 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The negative-dimensional integration method (NDIM) is revealing itself as a very useful technique for computing massless and/or massive Feynman integrals, covariant and noncovanant alike. Up until now however, the illustrative calculations done using such method have been mostly covariant scalar integrals/without numerator factors. We show here how those integrals with tensorial structures also can be handled straightforwardly and easily. However, contrary to the absence of significant features in the usual approach, here the NDIM also allows us to come across surprising unsuspected bonuses. Toward this end, we present two alternative ways of working out the integrals and illustrate them by taking the easiest Feynman integrals in this category that emerge in the computation of a standard one-loop self-energy diagram. One of the novel and heretofore unsuspected bonuses is that there are degeneracies in the way one can express the final result for the referred Feynman integral.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The standard way of evaluating residues and some real integrals through the residue theorem (Cauchy's theorem) is well-known and widely applied in many branches of Physics. Herein we present an alternative technique based on the negative dimensional integration method (NDIM) originally developed to handle Feynman integrals. The advantage of this new technique is that we need only to apply Gaussian integration and solve systems of linear algebraic equations, with no need to determine the poles themselves or their residues, as well as obtaining a whole class of results for differing orders of poles simultaneously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is a review of the Negative Dimension Integration Method as a powerful tool for the computation of the radiative corrections present in Quantum Field Perturbation Theory. This method is applicable in the context of Dimensional Regularization and it provides exact solutions for Feynman integrals with both dimensional parameter and propagator exponents generalized. These solutions are presentedintheformoflinearcombinationsofhypergeometricfunctionswhosedomains of convergence are related to the analytic structure of the Feynman Integral. Each solution is connected to the others trough analytic continuations. Besides presenting and discussing the general algorithm of the method in a detailed way, we offer concrete applications to scalar one-loop and two-loop integrals as well as to the one-loop renormalizationofQuantumElectrodynamics (QED)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we present the complete massless and massive one-loop triangle diagram results using the negative dimensional integration method (NDIM). We consider the following cases: massless internal fields; one massive, two massive with the same mass m and three equal masses for the virtual particles. Our results are given in terms of hypergeometric and hypergeometric-type functions of the external momenta (and masses for the massive cases) where the propagators in the Feynman integrals are raised to arbitrary exponents and the dimension of the space-time is D. Our approach reproduces the known results; it produces other solutions as yet unknown in the literature as well. These new solutions occur naturally in the context of NDIM revealing a promising technique to solve Feynman integrals in quantum field theories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The well-known D-dimensional Feynman integrals were shown, by Halliday and Ricotta, to be capable of undergoing analytic continuation into the domain of negative values for the dimension of space-time. Furthermore, this could be identified with Grassmannian integration in positive dimensions. From this possibility follows the concept of negative-dimensional integration for loop integrals in field theories. Using this technique, we evaluate three two-loop three-point scalar integrals, with five and six massless propagators, with specific external kinematic configurations (two legs on-shell), and four three-loop two-point scalar integrals. These results are given for arbitrary exponents of propagators and dimension, in Euclidean space, and the particular cases compared to results published in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The negative-dimensional integration method is a technique which can be applied, with success, in usual covariant gauge calculations. We consider three two-loop diagrams: the scalar massless non-planar double-box with six propagators and the scalar pentabox in two cases, where six virtual particles have the same mass, and in the case all of them are massless. Our results are given in terms of hypergeometric functions of Mandelstam variables and also for arbitrary exponents of propagators and dimension D.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

L’intégration du génome du virus papilloma humain (VPH) a été reconnu jusqu’`a récemment comme étant un événnement fréquent mais pourtant tardif dans la progression de la maladie du col de l’utérus. La perspective temporelle vient, pourtant, d’être mise au défi par la détection de formes intégrées de VPH dans les tissus normaux et dans les lésions prénéoplasiques. Notre objectif était de déterminer la charge virale de VPH-16 et son état physique dans une série de 220 échantillons provenant de cols uterins normaux et avec des lésions de bas-grade. La technique quantitative de PCR en temps réel, méthode Taqman, nous a permis de quantifier le nombre de copies des gènes E6, E2, et de la B-globine, permettant ainsi l’évaluation de la charge virale et le ratio de E6/E2 pour chaque spécimen. Le ratio E6/E2 de 1.2 ou plus était suggestif d’intégration. Par la suite, le site d’intégration du VPH dans le génome humain a été déterminé par la téchnique de RS-PCR. La charge virale moyenne était de 57.5±324.6 copies d'ADN par cellule et le ratio E6/E2 a évalué neuf échantillons avec des formes d’HPV intégrées. Ces intégrants ont été amplifiés par RS-PCR, suivi de séquençage, et l’homologie des amplicons a été déterminée par le programme BLAST de NCBI afin d’identifier les jonctions virales-humaines. On a réussi `a identifier les jonctions humaines-virales pour le contrôle positif, c'est-à-dire les cellules SiHa, pourtant nous n’avons pas detecté d’intégration par la technique de RS-PCR dans les échantillons de cellules cervicales exfoliées provenant de tissus normaux et de lésions de bas-grade. Le VPH-16 est rarement intégré dans les spécimens de jeunes patientes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Coulomb gauge has at least two advantages over other gauge choices in that bound states between quarks and studies of confinement are easier to understand in this gauge. However, perturbative calculations, namely Feynman loop integrations, are not well defined (there are the so-called energy integrals) even within the context of dimensional regularization. Leibbrandt and Williams proposed a possible cure to such a problem by splitting the space-time dimension into D = ω + ρ, i.e., introducing a specific parameter ρ to regulate the energy integrals. The aim of our work is to apply the negative dimensional integration method (NDIM) to the Coulomb gauge integrals using the recipe of split-dimension parameters and present complete results - finite and divergent parts - to the one- and two-loop level for arbitrary exponents of the propagators and dimension.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper explores the limits and potentials of European citizenship as a transnational form of social integration, taking as comparison Marshall's classical analysis of the historical development of social rights in the context of the national Welfare State. It is submitted that this potential is currently frustrated by the prevailing negative-integration dimension in which the interplay between Union citizenship and national systems of Welfare State takes place. This negative dimension pervades the entire case law of the Court of Justice on Union citizenship, even becoming dominant – after the famous Viking and Laval judgements – in the ways in which the judges in Luxembourg have built, and limited, what in Marshall’s terms might be called the European collective dimension of “industrial citizenship”. The new architecture of the economic and monetary governance of the Union, based as it is on an unprecedented effort towards a creeping constitutionalisation of a neo-liberal politics of austerity and welfare retrenchment, is destined to strengthen the de-structuring pressures on the industrial-relation and social protection systems of the member States. The conclusions sum-up the main critical arguments and make some suggestions for an alternative path for re-politicising the social question in Europe.