868 resultados para Negative Binomial Regression Model (NBRM)
Resumo:
At least two important transportation planning activities rely on planning-level crash prediction models. One is motivated by the Transportation Equity Act for the 21st Century, which requires departments of transportation and metropolitan planning organizations to consider safety explicitly in the transportation planning process. The second could arise from a need for state agencies to establish incentive programs to reduce injuries and save lives. Both applications require a forecast of safety for a future period. Planning-level crash prediction models for the Tucson, Arizona, metropolitan region are presented to demonstrate the feasibility of such models. Data were separated into fatal, injury, and property-damage crashes. To accommodate overdispersion in the data, negative binomial regression models were applied. To accommodate the simultaneity of fatality and injury crash outcomes, simultaneous estimation of the models was conducted. All models produce crash forecasts at the traffic analysis zone level. Statistically significant (p-values < 0.05) and theoretically meaningful variables for the fatal crash model included population density, persons 17 years old or younger as a percentage of the total population, and intersection density. Significant variables for the injury and property-damage crash models were population density, number of employees, intersections density, percentage of miles of principal arterial, percentage of miles of minor arterials, and percentage of miles of urban collectors. Among several conclusions it is suggested that planning-level safety models are feasible and may play a role in future planning activities. However, caution must be exercised with such models.
Resumo:
In regression analysis of counts, a lack of simple and efficient algorithms for posterior computation has made Bayesian approaches appear unattractive and thus underdeveloped. We propose a lognormal and gamma mixed negative binomial (NB) regression model for counts, and present efficient closed-form Bayesian inference; unlike conventional Poisson models, the proposed approach has two free parameters to include two different kinds of random effects, and allows the incorporation of prior information, such as sparsity in the regression coefficients. By placing a gamma distribution prior on the NB dispersion parameter r, and connecting a log-normal distribution prior with the logit of the NB probability parameter p, efficient Gibbs sampling and variational Bayes inference are both developed. The closed-form updates are obtained by exploiting conditional conjugacy via both a compound Poisson representation and a Polya-Gamma distribution based data augmentation approach. The proposed Bayesian inference can be implemented routinely, while being easily generalizable to more complex settings involving multivariate dependence structures. The algorithms are illustrated using real examples. Copyright 2012 by the author(s)/owner(s).
Resumo:
Since 1991 Colombia has had a market-determined Peso - US Dollar Nominal Exchange Rate (NER), after more than 20 years of controlled and multiple exchange rates. The behavior (revaluation / devaluation) of the NER is constantly reported in news, editorials and op-eds of major newspapers of the nation with particular attention to revaluation. The uneven reporting of revaluation episodes can be explained by the existence of an interest group particulary affected by revaluation, looking to increase awareness and sympathy for help from public institutions. Using the number of news and op-eds from a major Colombian newspaper, it is shown that there is an over-reporting of revaluation episodes in contrast to devaluation ones. Secondly, using text analysis upon the content of the news, it is also shown that the words devaluation and revaluation are far apart in the distribution of words within the news; and revaluation is highly correlated with words related to: public institutions, exporters and the need of assistance. Finally it is also shown that the probability of the central bank buying US dollars to lessen revaluation effects increases with the number of news; even though the central bank allegedly intervenes in the exchange rate market only to tame volatility or accumulate international reserves.
Resumo:
Objective: To examine the effects of extremely cold and hot temperatures on ischaemic heart disease (IHD) mortality in five cities (Beijing, Tianjin, Shanghai, Wuhan and Guangzhou) in China; and to examine the time relationships between cold and hot temperatures and IHD mortality for each city. Design: A negative binomial regression model combined with a distributed lag non-linear model was used to examine city-specific temperature effects on IHD mortality up to 20 lag days. A meta-analysis was used to pool the cold effects and hot effects across the five cities. Patients: 16 559 IHD deaths were monitored by a sentinel surveillance system in five cities during 2004–2008. Results: The relationships between temperature and IHD mortality were non-linear in all five cities. The minimum-mortality temperatures in northern cities were lower than in southern cities. In Beijing, Tianjin and Guangzhou, the effects of extremely cold temperatures were delayed, while Shanghai and Wuhan had immediate cold effects. The effects of extremely hot temperatures appeared immediately in all the cities except Wuhan. Meta-analysis showed that IHD mortality increased 48% at the 1st percentile of temperature (extremely cold temperature) compared with the 10th percentile, while IHD mortality increased 18% at the 99th percentile of temperature (extremely hot temperature) compared with the 90th percentile. Conclusions: Results indicate that both extremely cold and hot temperatures increase IHD mortality in China. Each city has its characteristics of heat effects on IHD mortality. The policy for response to climate change should consider local climate–IHD mortality relationships.
Resumo:
The primary aim of this descriptive exploration of scientists’ life cycle award patterns is to evaluate whether awards breed further awards and identify researcher experiences after reception of the Nobel Prize. To achieve this goal, we collected data on the number of awards received each year for 50 years before and after Nobel Prize reception by all 1901–2000 Nobel laureates in physics, chemistry, and medicine or physiology. Our results indicate an increasing rate of awards before Nobel reception, reaching the summit precisely in the year of the Nobel Prize. After this pinnacle year, awards drop sharply. This result is confirmed by separate analyses of three different disciplines and by a random-effects negative binomial regression model. Such an effect, however, does not emerge for more recent Nobel laureates (1971–2000). In addition, Nobelists in medicine or physiology generate more awards shortly before and after prize reception, whereas laureates in chemistry attract more awards as time progresses.
Resumo:
Pacientes portadores de deformidades dentofaciais podem relatar dificuldades de mastigação e fala, desordens temporomandibulares, preocupação com a imagem corporal e baixa autoestima. Frequentemente, buscam tratamento orto-cirúrgico pela motivação de obter melhora notável nos aspectos estético, funcional e psicossocial. A evidência atualmente disponível sobre os benefícios na qualidade de vida relacionada à saúde bucal desta modalidade terapêutica ainda não é conclusiva, devido à diversidade de metodologias adotadas entre os estudos existentes, majoritariamente realizados na América do Norte, Europa, Oriente Médio e Ásia. Logo, é essencial utilizar instrumentos específicos para avaliar os efeitos desta modalidade de tratamento também na vida diária dos pacientes brasileiros. O propósito do presente estudo transversal foi determinar o impacto que o tratamento orto-cirúrgico exerce sobre a percepção de qualidade de vida dos pacientes portadores de deformidades dentofaciais, bem como a influência exercida pelo gênero, idade, renda, escolaridade e características da má oclusão, nas quatro etapas inerentes a esta modalidade de tratamento: (1) Inicial; (2) Preparo ortodôntico para a cirurgia; (3) Pós-cirúrgico; e (4) Contenção (pós-tratamento). Duzentos e cinquenta e quatro pacientes foram entrevistados em três importantes centros de atendimento na cidade do Rio de Janeiro. A qualidade de vida foi avaliada pelos questionários OHIP-14 (Oral Health Impact Profile - Short Version) e pelo OQLQ (Orthognathic Quality of Life Questionnaire) em suas versões traduzidas e validadas para o português. A gravidade da má oclusão e autopercepção estética foram avaliadas com base no Índice de Necessidade de Tratamento Ortodôntico (IOTN) e pelo Índice de Estética Dental (DAI). A análise dos dados foi efetuada pelos testes qui-quadrado, Kruskal-Wallis e modelos de regressão binomial negativa múltipla. Os pacientes dos quatro grupos foram semelhantes em relação ao gênero (p = 0,463), escolaridade (p = 0,276) e renda familiar (p = 0,100). Entre os entrevistados houve o predomínio de mulheres, com ensino médio completo e renda familiar entre 2 e 3 salários mínimos, portadores de má oclusão de Classe III de Angle grave. No modelo de regressão binomial negativa ajustado para os fatores gênero, idade, renda familiar e escolaridade, a qualidade de vida aferida pelo OHIP-14 demonstrou que o grupo Inicial sofreu impactos mais negativos do que os grupos Pós-cirúrgico, Preparo e Contenção; o OQLQ indicou que o grupo Inicial sofreu impactos mais negativos do que os grupos Preparo, Pós-cirúrgico e Contenção, nesta sequência. Não foi detectada influência da idade, renda e escolaridade nestes resultados. Foi observado que o gênero feminino sofreu mais impacto negativo na qualidade de vida, principalmente nas dimensões relativas à função e a aspectos sociais. Concluiu-se que os pacientes que finalizaram o tratamento orto-cirúrgico apresentaram como benefícios menores impactos na qualidade de vida específica e relacionada à saúde bucal, melhor autopercepção estética e menor gravidade da má oclusão, em comparação aos pacientes nas etapas pré e pós-cirúrgica e aos pacientes portadores de deformidades dentofaciais em busca de tratamento.
Resumo:
Due to global warming and shrinking fossil fuel resources, politics as well as society urge for a reduction of green house gas (GHG) emissions. This leads to a re-orientation towards a renewable energy sector. In this context, innovation and new technologies are key success factors. Moreover, the renewable energy sector has entered a consolidation stage, where corporate investors and mergers and acquisitions (M&A) gain in importance. Although both M&A and innovation in the renewable energy sector are important corporate strategies, the link between those two aspects has not been examined before. The present thesis examines the research question how M&A influence the acquirer’s post-merger innovative performance in the renewable energy sector. Based on a framework of relevant literature, three hypotheses are defined. First, the relation between non-technology oriented M&A and post-merger innovative performance is discussed. Second, the impact of absolute acquired knowledge on postmerger innovativeness is examined. Third, the target-acquirer relatedness is discussed. A panel data set of 117 firms collected over a period of six years has been analyzed via a random effects negative binomial regression model and a time lag of one year. The results support a non-significant, negative impact of non-technology M&A on postmerger innovative performance. The applied model did not support a positive and significant impact of absolute acquired knowledge on post-merger innovative performance. Lastly, the results suggest a reverse relation than postulated by Hypothesis 3. Targets from the same industry significantly and negatively influence the acquirers’ innovativeness.
Resumo:
BACKGROUND Prophylactic measures are key components of dairy herd mastitis control programs, but some are only relevant in specific housing systems. To assess the association between management practices and mastitis incidence, data collected in 2011 by a survey among 979 randomly selected Swiss dairy farms, and information from the regular test day recordings from 680 of these farms was analyzed. RESULTS The median incidence of farmer-reported clinical mastitis (ICM) was 11.6 (mean 14.7) cases per 100 cows per year. The median annual proportion of milk samples with a composite somatic cell count (PSCC) above 200,000 cells/ml was 16.1 (mean 17.3) %. A multivariable negative binomial regression model was fitted for each of the mastitis indicators for farms with tie-stall and free-stall housing systems separately to study the effect of other (than housing system) management practices on the ICM and PSCC events (above 200,000 cells/ml). The results differed substantially by housing system and outcome. In tie-stall systems, clinical mastitis incidence was mainly affected by region (mountainous production zone; incidence rate ratio (IRR) = 0.73), the dairy herd replacement system (1.27) and farmers age (0.81). The proportion of high SCC was mainly associated with dry cow udder controls (IRR = 0.67), clean bedding material at calving (IRR = 1.72), using total merit values to select bulls (IRR = 1.57) and body condition scoring (IRR = 0.74). In free-stall systems, the IRR for clinical mastitis was mainly associated with stall climate/temperature (IRR = 1.65), comfort mats as resting surface (IRR = 0.75) and when no feed analysis was carried out (IRR = 1.18). The proportion of high SSC was only associated with hand and arm cleaning after calving (IRR = 0.81) and beef producing value to select bulls (IRR = 0.66). CONCLUSIONS There were substantial differences in identified risk factors in the four models. Some of the factors were in agreement with the reported literature while others were not. This highlights the multifactorial nature of the disease and the differences in the risks for both mastitis manifestations. Attempting to understand these multifactorial associations for mastitis within larger management groups continues to play an important role in mastitis control programs.
Resumo:
Objectives. To investigate procedural gender equity by assessing predisposing, enabling and need predictors of gender differences in annual medical expenditures and utilization among hypertensive individuals in the U.S. Also, to estimate and compare lifetime medical expenditures among hypertensive men and women in the U.S. ^ Data source. 2001-2004 the Medical Expenditure Panel Survey (MEPS);1986-2000 National Health Interview Survey (NHIS) and National Health Interview Survey linked to mortality in the National Death Index through 2002 (2002 NHIS-NDI). ^ Study design. We estimated total medical expenditure using four equations regression model, specific medical expenditures using two equations regression model and utilization using negative binomial regression model. Procedural equity was assessed by applying the Aday et al. theoretical framework. Expenditures were estimated in 2004 dollars. We estimated hypertension-attributable medical expenditure and utilization among men and women. ^ To estimate lifetime expenditures from ages 20 to 85+, we estimated medical expenditures with cross-sectional data and survival with prospective data. The four equations regression model were used to estimate average annual medical expenditures defined as sum of inpatient stay, emergency room visits, outpatient visits, office based visits, and prescription drugs expenditures. Life tables were used to estimate the distribution of life time medical expenditures for hypertensive men and women at different age and factors such as disease incidence, medical technology and health care cost were assumed to be fixed. Both total and hypertension attributable expenditures among men and women were estimated. ^ Data collection. We used the 2001-2004 MEPS household component and medical condition files; the NHIS person and condition files from 1986-1996 and 1997-2000 sample adult files were used; and the 1986-2000 NHIS that were linked to mortality in the 2002 NHIS-NDI. ^ Principal findings. Hypertensive men had significantly less utilization for most measures after controlling predisposing, enabling and need factors than hypertensive women. Similarly, hypertensive men had less prescription drug (-9.3%), office based (-7.2%) and total medical (-4.5%) expenditures than hypertensive women. However, men had more hypertension-attributable medical expenditures and utilization than women. ^ Expected total lifetime expenditure for average life table individuals at age 20, was $188,300 for hypertensive men and $254,910 for hypertensive women. But the lifetime expenditure that could be attributed to hypertension was $88,033 for men and $40,960 for women. ^ Conclusion. Hypertensive women had more utilization and expenditure for most measures than hypertensive men, possibly indicating procedural inequity. However, relatively higher hypertension-attributable health care of men shows more utilization of resources to treat hypertension related diseases among men than women. Similar results were reported in lifetime analyses.^ Key words: gender, medical expenditures, utilization, hypertension-attributable, lifetime expenditure ^
Resumo:
In this article, for the first time, we propose the negative binomial-beta Weibull (BW) regression model for studying the recurrence of prostate cancer and to predict the cure fraction for patients with clinically localized prostate cancer treated by open radical prostatectomy. The cure model considers that a fraction of the survivors are cured of the disease. The survival function for the population of patients can be modeled by a cure parametric model using the BW distribution. We derive an explicit expansion for the moments of the recurrence time distribution for the uncured individuals. The proposed distribution can be used to model survival data when the hazard rate function is increasing, decreasing, unimodal and bathtub shaped. Another advantage is that the proposed model includes as special sub-models some of the well-known cure rate models discussed in the literature. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes. We analyze a real data set for localized prostate cancer patients after open radical prostatectomy.
Resumo:
2000 Mathematics Subject Classification: 62F15.
Resumo:
Hot spot identification (HSID) aims to identify potential sites—roadway segments, intersections, crosswalks, interchanges, ramps, etc.—with disproportionately high crash risk relative to similar sites. An inefficient HSID methodology might result in either identifying a safe site as high risk (false positive) or a high risk site as safe (false negative), and consequently lead to the misuse the available public funds, to poor investment decisions, and to inefficient risk management practice. Current HSID methods suffer from issues like underreporting of minor injury and property damage only (PDO) crashes, challenges of accounting for crash severity into the methodology, and selection of a proper safety performance function to model crash data that is often heavily skewed by a preponderance of zeros. Addressing these challenges, this paper proposes a combination of a PDO equivalency calculation and quantile regression technique to identify hot spots in a transportation network. In particular, issues related to underreporting and crash severity are tackled by incorporating equivalent PDO crashes, whilst the concerns related to the non-count nature of equivalent PDO crashes and the skewness of crash data are addressed by the non-parametric quantile regression technique. The proposed method identifies covariate effects on various quantiles of a population, rather than the population mean like most methods in practice, which more closely corresponds with how black spots are identified in practice. The proposed methodology is illustrated using rural road segment data from Korea and compared against the traditional EB method with negative binomial regression. Application of a quantile regression model on equivalent PDO crashes enables identification of a set of high-risk sites that reflect the true safety costs to the society, simultaneously reduces the influence of under-reported PDO and minor injury crashes, and overcomes the limitation of traditional NB model in dealing with preponderance of zeros problem or right skewed dataset.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Boston Harbor has had a history of poor water quality, including contamination by enteric pathogens. We conduct a statistical analysis of data collected by the Massachusetts Water Resources Authority (MWRA) between 1996 and 2002 to evaluate the effects of court-mandated improvements in sewage treatment. Motivated by the ineffectiveness of standard Poisson mixture models and their zero-inflated counterparts, we propose a new negative binomial model for time series of Enterococcus counts in Boston Harbor, where nonstationarity and autocorrelation are modeled using a nonparametric smooth function of time in the predictor. Without further restrictions, this function is not identifiable in the presence of time-dependent covariates; consequently we use a basis orthogonal to the space spanned by the covariates and use penalized quasi-likelihood (PQL) for estimation. We conclude that Enterococcus counts were greatly reduced near the Nut Island Treatment Plant (NITP) outfalls following the transfer of wastewaters from NITP to the Deer Island Treatment Plant (DITP) and that the transfer of wastewaters from Boston Harbor to the offshore diffusers in Massachusetts Bay reduced the Enterococcus counts near the DITP outfalls.
Resumo:
Objective. To measure the demand for primary care and its associated factors by building and estimating a demand model of primary care in urban settings.^ Data source. Secondary data from 2005 California Health Interview Survey (CHIS 2005), a population-based random-digit dial telephone survey, conducted by the UCLA Center for Health Policy Research in collaboration with the California Department of Health Services, and the Public Health Institute between July 2005 and April 2006.^ Study design. A literature review was done to specify the demand model by identifying relevant predictors and indicators. CHIS 2005 data was utilized for demand estimation.^ Analytical methods. The probit regression was used to estimate the use/non-use equation and the negative binomial regression was applied to the utilization equation with the non-negative integer dependent variable.^ Results. The model included two equations in which the use/non-use equation explained the probability of making a doctor visit in the past twelve months, and the utilization equation estimated the demand for primary conditional on at least one visit. Among independent variables, wage rate and income did not affect the primary care demand whereas age had a negative effect on demand. People with college and graduate educational level were associated with 1.03 (p < 0.05) and 1.58 (p < 0.01) more visits, respectively, compared to those with no formal education. Insurance was significantly and positively related to the demand for primary care (p < 0.01). Need for care variables exhibited positive effects on demand (p < 0.01). Existence of chronic disease was associated with 0.63 more visits, disability status was associated with 1.05 more visits, and people with poor health status had 4.24 more visits than those with excellent health status. ^ Conclusions. The average probability of visiting doctors in the past twelve months was 85% and the average number of visits was 3.45. The study emphasized the importance of need variables in explaining healthcare utilization, as well as the impact of insurance, employment and education on demand. The two-equation model of decision-making, and the probit and negative binomial regression methods, was a useful approach to demand estimation for primary care in urban settings.^