939 resultados para Neem tree
Resumo:
The Neem tree, the oil of which has a long history of pesticide, fertilizer and medicinal use in India, has been studied extensively for its organic compounds. Here we present a physical, mineralogical and geochemical database resulting from the analyses of two Neem soil profiles (epipedons) in India. Neem tree derivatives are used in the manufacture of a variety of products, from anti-bacterial drugs and insecticides to fertilizers and animal feeds. A preliminary geochemical and mineralogical analysis of Neem soils is made to explore the potential for chemical links between Neem tree derivatives and soils. Physical soil characteristics, including colour, texture and clay mineralogy, suggest the two pedons formed under different hydrological regimes, and hence, are products of different leaching environments, one well-drained site, the other poorly drained. Geochemically, the two Neem soils exhibit similarities, with elevated concentrations of Th and rare earth elements. These elements are of interest because of their association with phosphates, especially monazite and apatite, and the potential link to fertilizer derivatives. Higher concentrations of trace elements in the soils may be linked to nutritional derivatives and to cell growth in the Neem tree.
Doseamento da Azadiractina e avaliação da atividade antimicrobiana em produtos contendo óleo de Neem
Resumo:
O Neem (Azadirachta indica) é uma árvore indiana conhecida pela atividade pesticida e por várias atividades farmacológicas. De entre os vários compostos já isolados e estudados, a Azadiractina (AZA) foi identificada como o principal composto bioativo desta planta. Este composto apresenta uma grande diversidade de localizações nesta planta, porém assume a sua máxima concentração ao nível das sementes, porção que se apresenta também como a principal fonte de obtenção do óleo de Neem. O óleo apresenta-se como a porção menos estudada do Neem, quer ao nível do seu teor em AZA, quer ao nível das suas propriedades, nomeadamente antimicrobianas. Neste sentido, os objetivos primordiais deste estudo foram o doseamento da Azadiractina e a avaliação da atividade antimicrobiana em produtos contendo óleo de Neem. Um método analítico rápido, sensível e seletivo utilizando HPLC-UV foi desenvolvido para a identificação e quantificação da Azadiractina-A (AZA-A) e 3-tigloylazadirachtol (AZA-B) em diferentes amostras de óleo de Neem. O teor de AZA-A, B e A+B determinado nas amostras de óleo de Neem apresentou valores entre 58,53-843,42 mg/kg, 12,52-800,223 mg/kg e 104,20-1642,17 mg/kg, respetivamente. Na generalidade, os valores obtidos foram inferiores aos descritos na literatura. A partir dos resultados obtidos, verificou-se ainda que o teor destes compostos não é similar em todas as amostras, sendo este condicionado pela qualidade das sementes que deram origem ao óleo e pelo processo extrativo utilizado. Para além disso, foi possível inferir que duas das amostras testadas teriam qualidade inferior, dados os teores reduzidos de AZA que apresentavam. As diferentes amostras de óleo de Neem, bem como formulações comerciais contendo óleo de Neem, foram testadas em 14 microrganismos de forma a avaliar o seu potencial antimicrobiano. Após a análise, verificou-se atividade antimicrobiana de todas as amostras sobre todos os microrganismos testados, observando-se atividade tanto em bactérias Gram+ como Gram-. Os resultados alcançados mostraram que o óleo de Neem e as formulações comerciais contendo óleo de Neem têm um potencial antimicrobiano interessante, principalmente sobre bactérias comuns em patologias da pele. Para além disso, foi possível comprovar que, no caso do óleo de Neem, a AZA não será a principal responsável por esta atividade. Por outro lado, verificou-se que a atividade antimicrobiana das formulações comerciais não se deverá exclusivamente à presença do óleo de Neem, Doseamento da Azadiractina e avaliação da atividade antimicrobiana em produtos contendo óleo de Neem X uma vez que os valores dos halos de inibição obtidos com as formulações tenderam a ser superiores aos verificados apenas com o óleo, além de que os valores de inibição mais elevados foram observados para as formulações contendo menor percentagem de óleo de Neem incorporado. Em suma, os resultados alcançados para os diferentes produtos analisados são promissores e, na sua maioria, convergem com o que está descrito na literatura. No entanto, apesar destes resultados serem um grande contributo, mais estudos são necessários e importantes para conhecer melhor os produtos analisados e assim poder tirar o maior proveito deles.
Resumo:
The effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree, Azadirachta indica, on the midgut cells of predatory larvae Ceraeochrysa claveri were analyzed. C. claveri were fed on eggs of Diatraea saccharalis treated with neem oil at a concentration of 0.5%, 1% and 2% during throughout the larval period. Light and electron microscopy showed severe damages in columnar cells, which had many cytoplasmic protrusions, clustering and ruptured of the microvilli, swollen cells, ruptured cells, dilatation and vesiculation of rough endoplasmic reticulum, development of smooth endoplasmic reticulum, enlargement of extracellular spaces of the basal labyrinth, intercellular spaces and necrosis. The indirect ingestion of neem oil with prey can result in severe alterations showing direct cytotoxic effects of neem oil on midgut cells of C. claveri larvae. Therefore, the safety of neem oil to non-target species as larvae of C. claveri was refuted, thus the notion that plants derived are safer to non-target species must be questioned in future ecotoxicological studies. © 2012 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The effects of azadirachtin A, a tetranortriterpenoid from the neem tree Azadirachta indica J., on both development and interaction between Trypanosoma cruzi, the causative agent of Chagas' disease, and its vector Rhodnius prolixus were studied. Given through a blood meal, a dose-rsponse relationship of azadirachtin was established using antifeedant effect and ecdysis inhibition as effective parameters. A singlo dose of azadirachtin A was able to block the onset of mitosis in the epidermis and ecdysteroid titers in the hemnolymph, determined by radioimmuneassay, were too low for an induction of ecadysis. The survival of T. cruzi was also studied in R. prolixus treated with the drug. If the trypomastigotes were fed in presence of azadirachtin A the number of parasites drastically decreased. If the drug was applied after infection of the bug with T. cruzi, the parasite was still abolished from the gut. If the insect was pretreated with azadirachtin A before infection the same observation was obtained. A single dose of azadirachtin A was enough for a permanent resistance of the insect host against its reinfection with T. cruzi and for blocking the ecdysis for a long time. The effects of azadirachtin A on the hormonal balance of the host and growth inhibition of the parasite will be discussed on the basis of the present results.
Resumo:
The effects of azadirachtin, a tetranortriterpenoid from the neem tree Aradirachta indica J. on both immunity and Trypanosoma cruzi interaction within Rhodniusprolixus and other triatomines, were presented Given through a blood meal, azadirachtin affected the immune reactivity as shown by a significant reduction in numbers of hemocytes and consequently nodule formation follwing challenge with Enterobacter cloacae ß12, reduction in ability to produce antibacterial activities in the hemolymph when injected with bacteria, and decreased ability to destroy the infection caused by inoculation of E. cloacae cells. A single dose of azadirachtin was able to block the development of T. cruzi in R. prolixus if given through the meal at different intervals, together with, before or after parasite infection. Similary, these results were observed with different triatomine species and different strains of T. cruzi. Azadirachtin induced a permanent resistance of the vector against reinfection with T. cruzi. The significance of these data is discussed in relation to the general mode of azadirachtin action in insects.
Resumo:
The fall armyworm, Spodoptera frugiperda, is one of the major field pests for maize production. It is mainly controlled by means of synthetic, and more recently by resistant cultivar of maize expressing Bt toxins. The neem tree, Azadirachta indica, is a plant that can potentially control insects with the advantage of being food and environmental safe. The aim of this study was to assess the effect of neem oil on the development and survival of S. frugiperda caterpillars by assessing histological alterations caused on their midgut. Newly hatched caterpillars were submitted to three neem oil concentrations: 0.006; 0.05; 0.4%, which were added to their artificial diet. Ten 3rd instar caterpillars, taken from each treatment, were submitted to histological analysis. The alimentary canals from the specimens were fixed in Baker for 12 hours, desiccated and diaphanized in alcohol/xylol (1:1) and xylol. After placing the samples in paraffin, they were sliced in 8 µm sections and stained with hematoxylin-eosin stain. The neem oil added to the diet of S. frugiperda caused total mortality at dose of 0.4% whilst still in the first instars, prolonged the larval and pupal stages, and reduced the pupal weight. Histo-physiological alterations such as degeneration of the epithelial lining of the midgut and in the peritrophic matrix were found at all concentrations of neem oil.
Resumo:
The Neem tree, Azadirachta indica, provides many useful compounds that are used as pesticides. However, the efficiency in field of products like neem oil can be committed because they have not been observed reproductive content of secondary metabolic like azadirachtin. Based on reverse-phase high-performance liquid chromatography (HPLC) a new method was developed to permit the rapid quantitative analysis of azadirachtin from seeds, extracts and oil of Neem. In the present study it was evaluated the azadirachtin quantitative variation among various Neem's extracts and seeds showing the importance of quality control for reproduction of the insecticide efficiency, using S. frugiperda as target insect.
Resumo:
En Cuba, la generalización del cultivo del Nim (Azadirachta indica A. Juss) y el uso de los bioinsecticidas producidos a partir de éste como apoyo al desarrollo de una agricultura sostenible y ecológica, trae consigo la necesidad de validar su efectividad biológica en una gama cada vez más amplia de plagas de interés agrícola. En el presente trabajo se demuestra que con el uso de los productos OleoNim 80 CE, NeoNim 60 CE, CubaNim T, CubaNim SM y FoliarNim HM es posible controlar con eficacia la acción nociva de plagas tales como Diaphania hyalinata (L.) en melón, Empoasca fabae (Harris) en poroto, Thrips palmi (Karny) en pepino en organopónico y bajo condiciones de cultivo protegido, y Bemisia tabaci (Genn.) en poroto y tomate. Las efectividades biológicas alcanzadas en estas experiencias, oscilaron entre 75 y 100 %, lo cual confirma la factibilidad del uso de estos bioinsecticidas insertados en el Manejo Integrado de Plagas para una agricultura sostenible.
Resumo:
Planting trees is an important way to promote the recovery of degraded areas in the Caatinga region. Experiments (E1, E2, and E3) were conducted in a randomized blocks design, with three, three, and five replicates, respectively. The objectives were to evaluate biomass of the shoots of: a) gliricidia (G) and sabiá (S), as a response to planting density; b) G, S, and neem (N) in competition; c) G, and S in agroforestry. E1 was conducted in split-plots, and planting densities (400, 600, 800, 1000, and 1200 plants ha-1) as subplots. E2 consisted of a factorial comprising the following plots: GGG, NGN, SGS, NNN, GNG, SNS, SSS, GSG, NSN (each letter represents a row of plants). E3 was conducted with G and S in agroforestry experiment. The trees were harvested after 54, 42, and 27 months old, in E1, E2 and E3, respectively. In E1, G presented higher green biomass of the stems and leaf at smaller densities than S, but lower green biomass of branches at most densities. The species did not differ for mean stem dry biomass and leaf dry biomass, but G showed higher branch dry biomass at most densities. Higher planting densities increased green and dry biomass of stems, branches, and leaves in S, but decreased those characteristics in G, with the exception of leaf dry mass, which was not influenced by density. In E2, the behavior of each species was identical in plots containing the same or different species. Griricidia showed the highest green biomass of stems and branches, and the highest values for geren biomass of the leaf were observed for gliricidia and neem. The highest stem, branch, and leaf dry biomass values were obtained for G, S, and N, respectively. In E3, G was superior for stem and leaf green biomass, and for stem and branch dry biomass. There were no differences between species for the other biomass values.
Weeds under the canopies of tree species submitted to different planting densities and intercropping
Resumo:
Assessing the growth and floristic composition of species that grow under the canopy of trees is important for weed control (WC). The objective of this study was to assess two experiments (E1 and E2), when the trees were two years and one year of age, respectively. In E1, sabiá (S) and gliricidia (G) were submitted to planting densities from 400 to 1.200 plants ha-1. In E2, growing systems consisting of S, G, and neem (N) combinations were compared: SSS, GGG, NNN, GSG, NSN, SGS, NGN, SNS, and GNG (each letter represents a row of plants). A random block design was adopted, with three (E1) and four (E2) replicates. In E1, treatments were arranged as split-plots (species in plots). In E2, the degrees of freedom for treatments (8) were partitioned into growing systems (treatments that involved the same species) and between growing system groups (2). Twenty-one weed species were found in E1. Gliricidia attained greater plant height than sabiá, but these species did not differ in canopy diameter, number of weed species per plot, and weed green and dry biomass of the shoot. Higher planting densities resulted in the reduction of all those traits. Twenty-six weed species were found in E2. Growing systems that included gliricidia showed canopies with greater diameters than growing systems that included neem. There were no differences between growing systems for number of weed species per plot and for weed green and dry biomass of the shoot.
Resumo:
Hevea brasiliensis (Willd. Ex Adr. Juss.) Muell.-Arg. is the primary source of natural rubber that is native to the Amazon rainforest. The singular properties of natural rubber make it superior to and competitive with synthetic rubber for use in several applications. Here, we performed RNA sequencing (RNA-seq) of H. brasiliensis bark on the Illumina GAIIx platform, which generated 179,326,804 raw reads on the Illumina GAIIx platform. A total of 50,384 contigs that were over 400 bp in size were obtained and subjected to further analyses. A similarity search against the non-redundant (nr) protein database returned 32,018 (63%) positive BLASTx hits. The transcriptome analysis was annotated using the clusters of orthologous groups (COG), gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Pfam databases. A search for putative molecular marker was performed to identify simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). In total, 17,927 SSRs and 404,114 SNPs were detected. Finally, we selected sequences that were identified as belonging to the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways, which are involved in rubber biosynthesis, to validate the SNP markers. A total of 78 SNPs were validated in 36 genotypes of H. brasiliensis. This new dataset represents a powerful information source for rubber tree bark genes and will be an important tool for the development of microsatellites and SNP markers for use in future genetic analyses such as genetic linkage mapping, quantitative trait loci identification, investigations of linkage disequilibrium and marker-assisted selection.