963 resultados para Nectar Secretion
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cucurbitaceae species depend on pollination by honey bees for fruit production. The overall objective of this work was to evaluate the potential of C. pepo for pollen and nectar production, that could help maintain colonies placed in the field. Plants of pumpkin were cultivated in field, in 1996 and 1997. Before anthesis, male flowers were covered to prevent visits by bees and other insects. After anthesis the flowers were uncovered and the following parameters were evaluated: 1) nectar production; 2) total sugar concentration in the nectar; 3) nectar replacement; and 4) production of pollen and flowers during the crop cycle. Nectar production varied from 18 to 79 µL flower-1 and increased progressively from 7h to 13h. The sugar concentration, measured at 7h, 9h and 11h, did not vary, averaging 50.5% ± 0.5% in 1996 and 40.5% ± 0.6% in 1997. At 13h the concentration decreased to 42% in 1996 and to 35% in 1997. Total daily nectar production was not influenced by removing nectar several times per day, indicating that nectar secretion is not stimulated or inhibited by frequent removal. The number of pollen grains did not differ in the two years, with an average of 43,669 ± 1,382 grains per flower. The peak rate of male and female flowers occurred from 60 to 66 days after planting (DAP) with 34.6 male flowers and 2.2 female flowers per plant, respectively. Cucurbita pepo has a potential for honey and pollen production of about 105 and 160 kg per hectare per season, respectively, which is enough to sustain, at least, five honeybee colonies.
Resumo:
This paper reports on the extrafloral nectary (EFN) of Hibiscus pernambucensis, a native shrub species occurring in mangrove and restinga along Brazil's coastline. EFNs occur as furrows with a protuberant border on the abaxial surface veins of the leaf blade. Each nectary consists of numerous secretory multicellular trichomes, epidermal cells in palisade-like arrangements and non-vascularized parenchyma tissue. Nectar secretion is prolonged, since secretion starts in very young leaves and remains up to completely expanded leaves. Reduced sugars, lipids, and proteins were histochemically detected in all the nectary cells; phenolic substances were detected in the vacuoles of the epidermal palisade cells and in some secretory trichome cells. The secretory cells that constitute the body of trichomes have large nuclei, dense cytoplasm with numerous mitochondria, dictyosomes, scattered lipid droplets and plastids with different inclusions: protein, lipid droplets or starch grains; vacuoles with different sizes have membranous material, phenolic and lipophilic substances. The palisade cells show thick periclinal walls, reduced cytoplasm with voluminous lipid drops and developed vacuoles. The nectary parenchyma cells contain abundant plasmodesmata and cytoplasm with scattered lipid droplets, mitochondria, plastids with starch grains and endoplasmic reticulum. Mucilage idioblasts are common in the inner nectary parenchyma. Protoderm and ground meristem participate in the formation of EFN. Our data indicate that all nectary regions are involved in nectar production and secretion, constituting a functional unit. Longevity of the extrafloral nectaries is likely associated with the presence of mucilage idioblasts, which increases the capacity of the nectary parenchyma to store water.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Relationships among floral biology, floral micromorphology and pollinator behaviour in bird-pollinated orchids are important issues to understand the evolution of the huge flower diversity within Orchidaceae. We aimed to investigate floral mechanisms underlying the interaction with pollinators in two hummingbird-pollinated orchids occurring in the Atlantic forest. We assessed floral biology, nectar traits, nectary and column micromorphologies, breeding systems and pollinators. In both species, nectar is secreted by lip calli through spaces between the medial lamellar surfaces of epidermal cells. Such form of floral nectar secretion has not been previously described. Both species present functional protandry and are self-compatible yet pollinator-dependent. Fruit sets in hand-pollination experiments were more than twice those under natural conditions, evidencing pollen limitation. The absence of fruit set in interspecific crosses suggests the existence of post-pollination barriers between these synchronopatric species. In Elleanthus brasiliensis, fruits resulting from cross-pollination and natural conditions were heavier than those resulting from self-pollination, suggesting advantages to cross-pollination. Hummingbirds pollinated both species, which share at least one pollinator species. Species differences in floral morphologies led to distinct pollination mechanisms. In E. brasiliensis, attachment of pollinaria to the hummingbird bill occurs through a lever apparatus formed by an appendage in the column, another novelty to the knowledge of orchids. In E. crinipes, pollinaria attachment occurs by simple contact with the bill during insertion into the flower tube, which fits tightly around the bill. The novelties described here illustrate the overlooked richness in ecology and morphophysiology in Orchidaceae. This article is protected by copyright. All rights reserved.
Resumo:
This paper deals with anatomical descriptions of some types of nectaries in 27 species of honey plants of Piracicaba, S. P. The material studied was divides in two groups: a) Extra-floral nectaries; b) Floral nectaries. Euphorbia pulcherrima, Willd; showed to belonging to the first group: its nectaries tissue consist of an epidermal layer of cell without stomata and with true gland, with subepidermal cells diferentiated by the thickness of the wall. Among the plants with floral nectaries, the following types has been listed, according the location of the nectary in the flower: 1 - with true glands: a) in sepals, Hibiscus rosa sinensis, L.; Dombeya Wallichii, Bth. e Hk; b) in the stamens tube, Antigonum leptopus, Hook e Arn.; 2 - on the receptacle with nectariferous tissue in the epidermal cell with: a) thickness wall with stomata, Prunus persical, L.; b) thin wall without stomata, Crotalaria paulinia, Shranck; Caesal-pinia sepiaria, Roxb; Aberia caffra; 3 - with a disc located in the receptacle with: epidermal: a) with stomata, Coffea arábica, L. var. semper florens; Citrus aurantifolia, Swing; Cinchona sp.; Pryrostegia ignea, Presl.; b) without stomata and with thin wall, Leojurus sibiricus, L.; Bactocydia unguis, Mart., Ipomoea purpurea, L.; Greviüea Thelemanniana, Hueg.; Dolichos lablab, L.; Vernonia polyanthes, Less., Montanoa bipinatifida, C. Koch., Eruca sativa, L. Brassica Juncea, Co; Eucalyptus tereticomis, Smith.; Eucalyptus rostrata, Schleche; Salvia splendens, Selow.; 4 - in the basal tissues of the ovary, Budleia brasiliensis, Jacq F.; Petrea subserrata, Cham.; 5 - in the base of stamens, Per sea americana, Mill. On the anatomical point of view, most of the types of nectary studied has external nectariferous tissues, located on the epidermal cells with thin periclinal wall and without stomata. The sub-epidermal layer were rich in sugar. Short correlation was found between the structure of the nectary and the amount of nectar secretion. So, in the nectary with true glands, in those with thin wall and without stomata on epidermal cells and in those with stomata, the secretion was higher than in the other types listed.
Resumo:
Floral nectar spurs are widely considered to influence pollinator behaviour in orchids. Spurs of 21 orchid species selected from within four molecularly circumscribed clades of subtribe Orchidinae (based on Platanthera s.l., Gymnadenia-Dactylorhiza s.l., Anacamptis s.l., Orchis s.s.) were examined under light and scanning electron microscopes in order to estimate correlations between nectar production (categorized as absent, trace, reservoir), interior epidermal papillae (categorized as absent, short, medium, long) and epidermal cell striations (categorized as apparently absent, weak, moderate, strong). Closely related congeneric species scored similarly, but more divergent species showed less evidence of phylogenetic constraints. Nectar secretion was negatively correlated with striations and positively correlated with papillae, which were especially frequent and large in species producing substantial reservoirs of nectar. We speculate that the primary function of the papillae is conserving energy through nectar resorption and explain the presence of large papillae in a minority of deceit-pollinated species by arguing that the papillae improve pollination because they are a tactile expectation of pollinating insects. In contrast, the prominence of striations may be a 'spandrel', simply reflecting the thickness of the overlying cuticle. Developmentally, the spur is an invagination of the labellum; it is primarily vascularized by a single 'U'-shaped primary strand, with smaller strands present in some species. Several suggestions are made for developing further, more targeted research programmes. (C) 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160, 369-387.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Animal-mediated pollination is essential in the reproductive biology of many flowering plants and tends to be associated with pollination syndromes, sets of floral traits that are adapted to particular groups of pollinators. The complexity and functional convergence of various traits within pollination syndromes are outstanding examples of biological adaptation, raising questions about their mechanisms and origins. In the genus Petunia, complex pollination syndromes are found for nocturnal hawkmoths (P. axillaris) and diurnal bees (P. integrifolia), with characteristic differences in petal color, corolla shape, reproductive organ morphology, nectar quantity, nectar quality, and fragrance. We dissected the Petunia syndromes into their most important phenotypic and genetic components. They appear to include several distinct differences, such as cell-growth and cell-division patterns in the basal third of the petals, elongation of the ventral stamens, nectar secretion and nectar sugar metabolism, and enzymatic differentiation in the phenylpropanoid pathway. In backcross-inbred lines of species-derived chromosome segments in a transposon tagging strain of P. hybrida, one to five quantitative trait loci were identified for each syndrome component. Two loci for stamen elongation and nectar volume were confirmed in introgression lines and showed large allelic differences. The combined data provide a framework for a detailed understanding of floral syndromes from their developmental and molecular basis to their impact on animal behavior. With its molecular genetic tools, this Petunia system provides a novel venue for a pattern of adaptive radiation that is among the most characteristic of flowering plants.
Resumo:
center dot Background and Aims Nectar production in the Bignoniaceae species lacking a nectariferous functional disc is ascribed to trichomatic glands around the ovary base and/or on the inner corolla wall. Nevertheless, knowledge about the secretion and function of these glands is very incomplete. The purpose of this paper is to study, from a developmental viewpoint, the ultrastructure, histochemistry and secretory process of the peltate trichomes on the ovary of Zeyheria montana, a species in the Bignoniaceae which has a rudimentary disc.center dot Methods Samples of the gynoecium at various developmental stages were fixed and processed for light and electron microscopy. Histochemistry and cytochemistry tests were performed to examine the chemical composition of exudates. Thin layer chromatography was used to determine the presence of alkaloids and terpenes in gynoecium and fruit extracts, and in fresh nectar stored in the nectar chamber.center dot Key Results Peltate trichomes at different developmental stages appear side by side from floral budding up to pre-dispersal fruit. Large plastids with an extensive internal membrane system consisting of tubules filled with lipophilic material, abundant smooth endoplasmic reticulum, few Golgi bodies, lipophilic deposits in the smooth endoplasmic reticulum and mitochondria, and scattered cytoplasmic oil droplets are the main characteristics of mature head cells. The secretion which accumulates in the subcuticular space stains positively for hydrophilic and lipophilic substances, with lipids prevailing for fully peltate trichomes. Histochemistry and thin layer chromatography detected terpenes and alkaloids. Fehling's test to detect of sugars in the secretion was negative.center dot Conclusions the continuous presence and activity of peltate trichomes on the ovary of Z. montana from early budding through to flowering and fruiting set, and its main chemical components, alkaloids and terpenes, suggest that they serve a protective function and are not related to the floral nectar source or to improving nectar quality.
Resumo:
To estimate the impact of aging and diabetes on insulin sensitivity, beta-cell function, adipocytokines, and incretin production. Hyperglycemic clamps, arginine tests and meal tolerance tests were performed in 50 non-obese subjects to measure insulin sensitivity (IS) and insulin secretion as well as plasma levels of glucagon, GLP-1 and GIP. Patients with diabetes and healthy control subjects were divided into the following groups: middle-aged type 2 diabetes (MA-DM), aged Type 2 diabetes (A-DM) and middle-aged or aged subjects with normal glucose tolerance (MA-NGT or A-NGT). IS, as determined by the homeostasis model assessment, glucose infusion rate, and oral glucose insulin sensitivity, was reduced in the aged and DM groups compared with MA-NGT, but it was similar in the MA-DM and A-DM groups. Insulinogenic index, first and second phase insulin secretion and the disposition indices, but not insulin response to arginine, were reduced in the aged and DM groups. Postprandial glucagon production was higher in MA-DM compared to MA-NGT. Whereas the GLP-1 production was reduced in A-DM, no differences between groups were observed in GIP production. In non-obese subjects, diabetes and aging impair insulin sensitivity. Insulin production is reduced by aging, and diabetes exacerbates this condition. Aging associated defects superimposed diabetic physiopathology, particularly regarding GLP-1 production. On the other hand, the glucose-independent secretion of insulin was preserved. Knowledge of the complex relationship between aging and diabetes could support the development of physiopathological and pharmacological based therapies.
Resumo:
Pancreatic β-cells are highly sensitive to suboptimal or excess nutrients, as occurs in protein-malnutrition and obesity. Taurine (Tau) improves insulin secretion in response to nutrients and depolarizing agents. Here, we assessed the expression and function of Cav and KATP channels in islets from malnourished mice fed on a high-fat diet (HFD) and supplemented with Tau. Weaned mice received a normal (C) or a low-protein diet (R) for 6 weeks. Half of each group were fed a HFD for 8 weeks without (CH, RH) or with 5% Tau since weaning (CHT, RHT). Isolated islets from R mice showed lower insulin release with glucose and depolarizing stimuli. In CH islets, insulin secretion was increased and this was associated with enhanced KATP inhibition and Cav activity. RH islets secreted less insulin at high K(+) concentration and showed enhanced KATP activity. Tau supplementation normalized K(+)-induced secretion and enhanced glucose-induced Ca(2+) influx in RHT islets. R islets presented lower Ca(2+) influx in response to tolbutamide, and higher protein content and activity of the Kir6.2 subunit of the KATP. Tau increased the protein content of the α1.2 subunit of the Cav channels and the SNARE proteins SNAP-25 and Synt-1 in CHT islets, whereas in RHT, Kir6.2 and Synt-1 proteins were increased. In conclusion, impaired islet function in R islets is related to higher content and activity of the KATP channels. Tau treatment enhanced RHT islet secretory capacity by improving the protein expression and inhibition of the KATP channels and enhancing Synt-1 islet content.
Resumo:
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) functions both in regulation of insulin secretion and neurotransmitter release through common downstream mediators. Therefore, we hypothesized that pancreatic ß-cells acquire and store the information contained in calcium pulses as a form of metabolic memory, just as neurons store cognitive information. To test this hypothesis, we developed a novel paradigm of pulsed exposure of ß-cells to intervals of high glucose, followed by a 24-h consolidation period to eliminate any acute metabolic effects. Strikingly, ß-cells exposed to this high-glucose pulse paradigm exhibited significantly stronger insulin secretion. This metabolic memory was entirely dependent on CaMKII. Metabolic memory was reflected on the protein level by increased expression of proteins involved in glucose sensing and Ca(2+)-dependent vesicle secretion, and by elevated levels of the key ß-cell transcription factor MAFA. In summary, like neurons, human and mouse ß-cells are able to acquire and retrieve information.