981 resultados para Near infrared luminescence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yb-Bi codoped phosphate glass was prepared and its properties were compared with Bi-doped phosphate glass. The broadband infrared luminescence intensity from Yb-Bi codoped glass was similar to 32 times stronger than that of Bi-doped glass. The single-pass optical amplification was measured on a traditional two-wave mixing configuration. No optical amplification was observed in Bi-doped glass, while apparent broadband optical amplification between 1272 and 1336 nm was observed from Yb-Bi codoped glass with 980 nm laser diode excitation. The highest gain coefficient at 1272 nm of Yb-Bi codoped glass reached to 2.62 cm(-1). Yb-Bi codoped phosphate glass is a promising material for broadband optical amplification. (C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The near-infrared emission intensity of Ni2+ in Yb3+/Ni2+ codoped transparent MgO-Al2O3-Ga2O3-SiO2-TiO2 glass ceramics could be enhanced up to 4.4 times via energy transfer from Yb3+ to Ni2+ in nanocrystals. The best Yb2O3 concentration was about 1.00 mol%. For the Yb3+/Ni2+ codoped glass ceramic with 1.00 mol% Yb2O3, a broadband near-infrared emission centered at 1265 nm with full width at half maximum of about 300 nm and lifetime of about 220 mu s was observed. The energy transfer mechanism was also discussed. (C) 2008 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectral properties of Yb3+/Ni2+ codoped transparent silicate glass ceramics containing LiGa5O8 nanocrystals were investigated. The near-infrared emission intensity of Ni2+ was largely increased with Yb3+ codoping due to Yb3+-> Ni2+ energy transfer. The qualitative calculation of the energy transfer constant Cs-a and rate Ps-a showed that the Yb3+-> Ni2+ energy transfer was much greater than in the opposite direction. Yb3+/Ni2+ codoped glass ceramics with 0.75 mol % Yb2O3 exhibited a near-infrared emission with full width at half maximum of 290 nm and fluorescent lifetime of 920 mu s. The glass ceramics are promising for broadband optical amplification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of ternary Ln(tta)(3)L complexes (Ln = Ho, Tm; Htta = 2-thenoyltrifluoroacetone; L = 1,10-phenanthroline, 2,2'-bipyridine, or triphenyl phosphate oxide) and their corresponding sol-gel hybrid materials formed via the in situ synthesis process (designated as Ln-T-L gel) were reported. The complexes and the gels were studied in detail, which suggest the complexes have been successfully synthesized in the corresponding gels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CuIn(WO4)(2) porous nanospindles and nanorods were synthesized through a low-cost hydrothermal method without introducing any template or surfactants. An interesting formation mechanism, namely "oriented attachment", was observed for the growth of nanorods based on the experimental process and the anisotropic intrinsic crystalline structure of CuIn(WO4)(2), which is uncommon in such a system. The near-infrared luminescence of lanthanide ions (Er, Nd, Yb and Ho) doped CuIn(WO4)(2) nanostructures, especially in the 1300-1600 nm region, was discussed and of particular interest for telecommunications applications. X-Ray diffraction, scanning electron microscopy, transmission electron microscopy, electron diffraction and photoluminescence spectra were used to characterize these materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unique absorption properties of the 9-hydroxyphenalen-1-one (HPHN) ligand have been exploited to obtain visible-light-sensitizable rare-earth complexes in 1: 3 and 1: 4 metal-to-ligand ratios. In both stoichiometries (1:3,tris,Ln(PHN)3;1:4, tetrakis, A[ Ln( PHN)(4)], with Ln being a trivalent rare-earth ion and A being a monovalent cation), the complexes of Nd(III),Er( III), and Yb(III) show typical near-infrared luminescence upon excitation with visible light with wavelengths up to 475 nm. The X-ray crystal structures of the tris complexes show solvent coordination to the central rare-earth ion, whereas in the tetrakis complexes, the four PHN-ligands form a protective shield around the central ion, preventing small solvent molecules from coordinating to the rare-earth ion, at least in the solid state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anhydrous neodymium(III) iodide and erbium(Ill) iodide were dissolved in carefully dried batches of the ionic liquid 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(12)mim][Tf2N]. Provided that the ionic liquid had a low water content, intense near-infrared emission could be observed for both the neodymium(III) ion and for the erbium(III) ion. Luminescence lifetimes have been measured, and the quantum yield of the neodymium(III) sample has been measured. Exposure of the hygroscopic samples to atmospheric moisture conditions caused a rapid decrease of the luminescence intensities. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new type of near-infrared emitting rare-earth complex has been synthesised, consisting of three bis(perfluoroalkylsulfonyl)imide ligands and one 1,10-phenanthroline molecule. The chelate rings formed by the rare-earth ion and the bidentate ligands do not contain any carbon atoms and can hence be considered as 'inorganic' chelate rings. The absence of C-H stretching vibration modes in the first coordination sphere of the rare-earth ion and the presence of a light-harvesting moiety (1,10-phenanthroline) bound to the rare-earth ion result in a complex that can be efficiently excited and exhibits intense near-infrared luminescence. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near-infrared luminescence is observed from bismuth-doped GeS2-Ga2S3 chalcogenide glasses excited by an 808 nm laser diode. The emission peak with a maximum at about 1260 nm is observed in 80GeS(2)-20Ga(2)S(3):0.5Bi glass and it shifts toward the long wavelength with the addition of Bi gradually. The full width of half maximum (FWHM) is about 200 nm. The broadband infrared luminescence of Bi-doped GeS2-Ga2S3 chalcogenide glasses may be predominantly originated from the low valence state of Bi, such as Bi+. Raman scattering is also conducted to clarify the structure of glasses. These Bi-doped GeS2-Ga2S3 chalcogenide glasses can be applied potentially in novel broadband optical fibre amplifiers and broadly tunable laser in optical communication system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Layer-controlled hierarchical flowerlike AgIn(MoO4)(2) microstructures with "clean" surfaces using submicroplates as building blocks without introducing any template have been fabricated through a low-cost hydrothermal method. The near-infrared luminescence of lanthanide ion (Nd, Er, and Yb) doped AgIn(MoO4)(2) microstructures, in the 1300-1600 nm region, was discussed and is of particular interest for telecommunication applications. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, electron diffraction, and photoluminescence spectra were used to characterize these materials.