21 resultados para NdFeB
Resumo:
用8MPa的Ar气雾化制取NdFeB合金粉末,光学金相观察和X射线衍射分析表明,粉末主要由Nd2Fe14B相组成。粉末具有一定的矫顽力,回火处理后矫顽力明显提高。不同粒度的粉末矫顽力存在差异,粉末越细其矫顽力越高。粉末初始磁化曲线与烧结NdFeB磁体相似。
Resumo:
Nd-Fe-B永磁体的热稳定性较差,易氧化,氧化使材料的结构受到破坏,永磁性能受到不可恢复的损失。氧化过程是分阶段的,在室温和干燥的空气中是稳定的,150℃左右受到破坏的主要原因是体系中钕的氧化,230℃以上铁开始氧化,温度升高使氧化加快,800℃左右氧化基本结束,最终产物主要是Fe_2O_3、Nd_2O_3和NdBO_3。新研制的Nd-Fe-B-Si四元体系的抗氧化能力有较大的提高,居里温度也提高了许多,是一种大有发展前途的新材料。
Properties of nanoparticles prepared from NdFeB-based compound for magnetic hyperthermia application
Resumo:
Nanoparticles were prepared from a NdFeB-based alloy using the hydrogen decrepitation process together with high-energy ball milling and tested as heating agent for magnetic hyperthermia. In the milling time range evaluated (up to 10 h), the magnetic moment per mass at H = 1.59 MA m(-1) is superior than 70 A m(2) kg(-1); however, the intrinsic coercivity might be inferior than 20 kA m(-1). The material presents both ferromagnetic and superparamagnetic particles constituted by a mixture of phases due to the incomplete disproportionation reaction of Nd2Fe14BHx during milling. Solutions prepared with deionized water and magnetic particles exposed to an AC magnetic field (H-max similar to 3.7 kA m(-1) and f = 228 kHz) exhibited 26 K <= Delta T-max <= 44 K with a maximum estimated specific absorption rate (SAR) of 225 W kg(-1). For the pure magnetic material milled for the longest period of time (10 h), the SAR was estimated as similar to 2500 W kg(-1). In vitro tests indicated that the powders have acceptable cytotoxicity over a wide range of concentration (0.1-100 mu g ml(-1)) due to the coating applied during milling.
Resumo:
The effects of the compaction step on the (micro)structural features and aging behavior of polymer coated NdFeB-based bonded magnets is reported. Due to the fracture of the material during pressing, it is estimated an increase of at least 14% in the particles' area which is not coated. Such uncoated surfaces, when exposed to the environment, reduce the magnetic performance of the magnets aged/cured in air by 19% in the conditions evaluated in this investigation. Furthermore, XRD results interpreted by Rietveld analyses show a lattice parameter change in the tetragonal structure of the hard magnetic phase after pressing. Such change varies as a function of the height of the compacted part and it is ascribed to macro-elastic stress arising from the pressure distribution in the magnet. An aging/curing step during 24 h is able to relief such macro-elastic stress. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Several samples of NdFeB and SmCo permanent magnets have been irradiated with gamma rays up to different total irradiation doses until 1Mrad(Si). Magnetic properties of the samples have been measured at different temperatures before and after irradiation. The modifications of the magnetic parameters are presented. From these results it is highlighted which permanent magnets show more resistance to radiation and are more suitable to be included in devices for space applications or high radiation environments.
Resumo:
This paper considers the design of a radial flux permanent magnet iron less core brushless DC motor for use in an electric wheel drive with an integrated epicyclic gear reduction. The motor has been designed for a continuous output torque of 30 Nm and peak rating of 60 Nm with a maximum operating speed of 7000 RPM. In the design of brushless DC motors with a toothed iron stator the peak air-gap magnetic flux density is typically chosen to be close to that of the remanence value of the magnets used. This paper demonstrates that for an ironless motor the optimal peak air-gap flux density is closer to the maximum energy product of the magnets used. The use of a radial flux topology allows for high frequency operation and can be shown to give high specific power output while maintaining a relatively low magnet mass. Two-dimensional finite element analysis is used to predict the air-gap flux density. The motor design is based around commonly available NdFeB bar magnet size
Resumo:
This paper considers the design of a radial flux permanent magnet ironless core brushless DC motor for use in an electric wheel drive with an integrated epicyclic gear reduction. The motor has been designed for a continuous output torque of 30 Nm and peak rating of 60 Nm with a maximum operating speed of 7000 RPM. In the design of brushless DC motors with a toothed iron stator the peak air-gap magnetic flux density is typically chosen to be close to that of the remanence value of the magnets used. This paper demonstrates that for an ironless motor the optimal peak air-gap flux density is closer to the maximum energy product of the magnets used. The use of a radial flux topology allows for high frequency operation and can be shown to give high specific power output while maintaining a relatively low magnet mass. Two-dimensional finite element analysis is used to predict the airgap flux density. The motor design is based around commonly available NdFeB bar magnet size
Resumo:
Design, fabrication and preliminary testing of a flat pump with millimetre thickness are described in this paper. The pump is entirely made of polymer materials barring the magnet and copper coils used for electromagnetic actuation. The fabrication is carried out using widely available microelectronic packaging machinery and techniques. Therefore, the fabrication of the pump is straightforward and inexpensive. Two types of prototypes are designed and built. One consists of copper coils that are etched on an epoxy plate and the other has wound insulated wire of 90 mu m diameter to serve as a coil. The overall size of the first pump is 25 mm x 25 mm x 3.6 mm including the 3.1 mm-thick NdFeB magnet of diameter 12 mm. It consists of a pump chamber of 20 mm x 20 mm x 0.8 mm with copper coils etched from a copper-clad epoxy plate using dry-film lithography and milled using a CNC milling machine, two passive valves and the pump-diaphragm made of Kapton film of 0.089 mm thickness. The second pump has an overall size of 35 mm x 35 mm x 4.4 mm including the magnet and the windings. A breadboard circuit and DC power supply are used to test the pump by applying an alternating square-wave voltage pulse. A water slug in a tube attached to the inlet is used to observe and measure the air-flow induced by the pump against atmospheric pressure. The maximum flow rate was found to be 15 ml/min for a voltage of 2.5 V and a current of 19 mA at 68 Hz.
Resumo:
Since the exchange coupling theory was proposed by Kneller and Hawig in 1991 there has been a significant effort within the magnetic materials community to enhance the performance of rare earth magnets by utilising nano-composite meta-materials. Inclusions of magnetically soft iron smaller than approximately 10 nm in diameter are exchange coupled to a surrounding magnetically hard Nd2Fe14B matrix and provide an enhanced saturisation magnetisation without reducing coercivity. For such a fine nanostructure to be produced, close control over the thermal history of the material is needed. A processing route which provides this is laser annealing from an amorphous alloy precursor. In the current work, relationships between laser parameters, thermal histories of laser processed amorphous stoichiometric NdFeB ribbons and the magnetic properties of the resulting nanocrystalline products have been determined with a view to applying the process to thick film nanocomposite magnet production.
Resumo:
研制了一台体积和重量都较大、设计性能较高的全永磁电子回旋共振(Electron cyclotron resonance, ECR)离子源LAPECR2(Lanzhou all permanent magnetic ECR ion source No.2)。该离子源将用于中国科学院近代物理研究所320 kV高压平台,为其提供强流高电荷态离子束流。LAPECR2的研制采用全新的全永磁磁体结构设计,通过采用高性能的NdFeB永磁材料、优化的磁结构设计以及精确的计算,实测源体的磁场参数能达到高性能ECR离子源的设计要求。离子源采用较高频率的14.5 GHz微波馈入加热等离子体,波导直接馈入离子源以增强馈入微波的稳定性与效率。此外,还大量采用了一些有利于提高离子源高电荷态离子产额的关键技术,如铝内衬等离子体弧腔、负偏压盘、铝制等离子体电极、三电极引出系统、辅助掺气等。
Resumo:
The Latest developed LECR2M (Lanzhou ECR No. 2 Modified) source is the updated one of LECR2 (Lanzhou ECR No. 2) source at IMP. It has been assembled on the low energy ion beam experimental platform to produce MCI beams for atomic physics and material physics experimental research. In our updating program, the structure of injection and extraction components has been modified to make the source structure more simple and effective. The hexapole magnet has also been replaced by a new hexapole magnet with higher radial field and larger inner diameter. With this updating, stronger magnetic field confinement of the ECR plasma is possible and better base vacuum condition is also achieved. LECR2M was designed to be operated at 14.5GHz. During the preliminary test, 1.3emA O6+ beam was extracted with the injected rf power of 1.1kW. The source has been used to deliver intense MCI beams for different experiments. After some discussion of the main features of this newly updated source, some of the typical commissioning test results of LECR2M will be presented.