77 resultados para NbC


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dark brown sediment with clasts ranging from small to large. Clast shape ranges from angular to sub-rounded. Grain crushing is abundant throughout this sample. A few lineations can also be seen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a method for the direct and simultaneous determination of Cr and Mn in alumina by slurry sampling graphite furnace atomic absorption spectrometry (SiS-SIMAAS) using niobium carbide (NbC) as a graphite platform modifier and sodium fluoride (NaF) as a matrix modifier. 350 mu g of Nb were thermally deposited on the platform surface allowing the formation of NbC (mp 3500 degrees C) to minimize the reaction between aluminium and carbon of the pyrolytic platform, improving the graphite tube lifetime up to 150 heating cycles. A solution of 0.2 mol L(-1) NaF was used as matrix modifier for alumina dissolution as cryolite-based melt, allowing volatilization during pyrolysis step. Masses (c.a. 50 mg) of sample were suspended in 30 ml of 2.0% (v/v) of HNO(3). Slurry was manually homogenized before sampling. Aliquots of 20 mu l of analytical solutions and slurry samples were co-injected into the graphite tube with 20 mu l of the matrix modifier. In the best conditions of the heating program, pyrolysis and atomization temperatures were 1300 degrees C and 2400 degrees C, respectively. A step of 1000 degrees C was optimized allowing the alumina dissolution to form cryolite. The accuracy of the proposed method has been evaluated by the analysis of standard reference materials. The found concentrations presented no statistical differences compared to the certified values at 95% of the confidence level. Limits of detection were 66 ng g(-1) for Cr and 102 ng g(-1) for Mn and the characteristic masses were 10 and 13 pg for Cr and Mn, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current literature pertaining to the shape memory effect in the Fe–Mn–Si-based system is critically discussed. It is argued that the
enhanced shape memory previously attributed to NbC precipitation is mainly due to the associated thermo-mechanical treatments.
It is concluded that the thermo-mechanical processing of the alloy is the dominant factor that determines the shape memory effect in
this alloy system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the effects of TiC and NbC precipitation and prior cold rolling on the shape memory behaviour of an iron-based alloy. A precipitate-free alloy was used as a reference to investigate the relative contributions of prior-deformation and precipitation on shape memory. Heat treatment of the Nb- and Ti-containing alloys at 700 °C and 800 °C resulted in carbide precipitates between 120 nm and 220 nm in diameter. Bend testing of these samples showed a marginal increase in shape memory compared to the precipitate-free alloy. Under these conditions TiC precipitation exhibited slightly better shape memory than for NbC. However, this small increase was over-shadowed by the marked increase in shape memory that can be produced by subjecting the alloys to cold rolling followed by recovery annealing. When processed in this way, fine carbides are formed in the Ti- and Nb-containing alloys during the heat treatment. For particles >25 nm in diameter the shape memory is unaffected, but, it was found that small <5 nm particles have a detrimental effect on shape memory due to pinning of the martensite plates, thereby inhibiting their reversion to austenite. The optimum shape memory was observed in the precipitate-free alloy after cold rolling and recovery annealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work has investigated the evolution of microbands (MBs) and their interaction with strain-induced NbC precipitates during uniaxial compression of a model austenitic Fe-30Ni-Nb steel at 925 °C. The (1 1 0) fibre grains, both without and with copious amounts of precipitates, contained up to large strains crystallographic MBs aligned close to the highly stressed {1 1 1} slip planes having large Schmid factors. The MBs thus maintained their crystallographic character during straining, through continuously rearranging themselves, and did not follow the macroscopically imposed rigid body rotation. During double-pass deformation, fine NbC particles formed at short inter-pass holding remained strongly pinned at small reloading strains and appeared to be dragged by rearranging MB walls. With increasing reloading strain, the fine precipitates became progressively released from the above walls. During reloading after increased holding time, the coarsened particles tended with their increased size to become increasingly detached from the MB walls already at a small strain. The precipitate-free MB wall segments rearranged during straining to maintain their crystallographic alignment, while the detached precipitates followed the sample shape change and rotated towards the compression plane. The MB wall rearrangement generally occurred through cooperative migration of the corresponding dislocation networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of this study is to contribute to the understanding of the appropriate accounting treatment of the operations in cooperatives, which differentiates them from other Brazilian commercial societies. This treatment is objectively examined under the lens of the norm NBC T 10.8 of Federal Council of Accounting, which determines distinction between cooperative acts and non-cooperative acts. The theoretical foundation of this paperwork is centered in examining, from both the cooperative doctrine and the accounting theory viewpoint, the issues related to the origin, nature and purpose of the cooperatives, as well as the accounting regulation applicable to them. The author developed a method to treat adequately the norm NBC T 10.8 and applied it to a case study of a wine producer cooperative in southern Brazil. As a result of this work, it is demonstrated that NBC T 10.8 eliminated a historical deficiency that permeated the accounting practice in cooperatives, whose accounting procedures - implicit in both technical and scientific content in NBC T 10.8 ¿ are presented in a detailed manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal powder sintering appears to be promising option to achieve new physical and mechanical properties combining raw material with new processing improvements. It interest over many years and continue to gain wide industrial application. Stainless steel is a widely accepted material because high corrosion resistance. However stainless steels have poor sinterability and poor wear resistance due to their low hardness. Metal matrix composite (MMC) combining soft metallic matrix reinforced with carbides or oxides has attracted considerable attention for researchers to improve density and hardness in the bulk material. This thesis focuses on processing 316L stainless steel by addition of 3% wt niobium carbide to control grain growth and improve densification and hardness. The starting powder were water atomized stainless steel manufactured for Höganäs (D 50 = 95.0 μm) and NbC produced in the UFRN and supplied by Aesar Alpha Johnson Matthey Company with medium crystallite size 16.39 nm and 80.35 nm respectively. Samples with addition up to 3% of each NbC were mixed and mechanically milled by 3 routes. The route1 (R1) milled in planetary by 2 hours. The routes 2 (R2) and 3 (R3) milled in a conventional mill by 24 and 48 hours. Each milled samples and pure sample were cold compacted uniaxially in a cylindrical steel die (Ø 5 .0 mm) at 700 MPa, carried out in a vacuum furnace, heated at 1290°C, heating rate 20°C stand by 30 and 60 minutes. The samples containing NbC present higher densities and hardness than those without reinforcement. The results show that nanosized NbC particles precipitate on grain boundary. Thus, promote densification eliminating pores, control grain growth and increase the hardness values

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This masther dissertation presents a contribution to the study of 316L stainless steel sintering aiming to study their behavior in the milling process and the effect of isotherm temperature on the microstructure and mechanical properties. The 316L stainless steel is a widely used alloy for their high corrosion resistance property. However its application is limited by the low wear resistance consequence of its low hardness. In previous work we analyzed the effect of sintering additives as NbC and TaC. This study aims at deepening the understanding of sintering, analyzing the effect of grinding on particle size and microstructure and the effect of heating rate and soaking time on the sintered microstructure and on their microhardness. Were milled 316L powders with NbC at 1, 5 and 24 hours respectively. Particulates were characterized by SEM and . Cylindrical samples height and diameter of 5.0 mm were compacted at 700 MPa. The sintering conditions were: heating rate 5, 10 and 15◦C/min, temperature 1000, 1100, 1200, 1290 and 1300◦C, and soaking times of 30 and 60min. The cooling rate was maintained at 25◦C/min. All samples were sintered in a vacuum furnace. The sintered microstructure were characterized by optical and electron microscopy as well as density and microhardness. It was observed that the milling process has an influence on sintering, as well as temperature. The major effect was caused by firing temperature, followed by the grinding and heating rate. In this case, the highest rates correspond to higher sintering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 15Kh2MFA steel is a kind of Cr-Mo-V family steels and can be used in turbines for energy generation, pressure vessels, nuclear reactors or applications where the range of temperature that the material works is between 250 to 450°C. To improve the properties of these steels increasing the service temperature and the thermal stability is add a second particle phase. These particles can be oxides, carbides, nitrites or even solid solution of some chemical elements. On this way, this work aim to study the effect of addition of 3wt% of niobium carbide in the metallic matrix of 15Kh2MFA steel. Powder metallurgy was the route employed to produce this metallic matrix composite. Two different milling conditions were performed. Condition 1: milling of pure 15Kh2MFA steel and condition 2: milling of 15Kh2MFA steel with addition of niobium carbide. A high energy milling was carried out during 5 hours. Then, these two powders were sintered in a vacuum furnace (10-4torr) at 1150 and 1250°C during 60 minutes. After sintering the samples were normalized at 950°C per 3 minutes followed by air cooling to obtain a desired microstructure. Results show that the addition of niobium carbide helps to mill faster the particles during the milling when compared with that steel without carbide. At the sintering, the niobium carbide helps to sinter increasing the density of the samples reaching a maximum density of 7.86g/cm³, better than the melted steel as received that was 7,81g/cm³. In spite this good densification, after normalizing, the niobium carbide don t contributed to increase the microhardness. The best microhardness obtained to the steel with niobium carbide was 156HV and to pure 15Kh2MFA steel was 212HV. It happened due when the niobium carbide is added to the steel a pearlitic structure was formed, and the steel without niobium carbide submitted to the same conditions reached a bainitic structure

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbide reinforced metallic alloys potentially improve some important mechanical properties required for the overall use of important engineering materials such as steel and nickel. Nevertheless, improved performance is achieved not only by composition enhancement but also by adequate processing techniques, such as novel sintering methods in the case of powder metallurgy. The method minimizes energy losses in addition to providing uniform heating during sintering. Thus, the general objective of this study was to evaluate the density, hardness, flexural strength, dilatometric behavior and to analyze the microstructure of metal matrix composites based nickel with addition of carbides of tantalum and / or niobium when sintered in a conventional furnace and Plasma assisted debinding and sintering (PADS). Initially, were defineds best parameters of granulation, screening and mixing procedure. After, mixtures of carbonyl Ni and 5%, 10% and 15 wt.% NbC and TaC were prepared in a Y-type mixer under wet conditions during 60 minutes. The mixtures were then dried and granulated using 1.5 wt. % paraffin diluted in hexane. Granulates were cold pressed under 600 MPa. Paraffin was then removed from the pressed pellets during a pre-sintering process carried out in a tubular furnace at 500 °C during 30 min. The heating rate was 3 ºC/min. The pellets were then sintered using either a plasma assisted reactor or a conventional resistive tubular furnace. For both methods, the heating rate was set to 8 ºC/min up to 1150 °C. The holding time was 60 minutes. The microstructure of the sintered samples was evaluated by SEM. Brinell hardness tests were also carried out. The results revealed that higher density and higher hardness values were observed in the plasma-assisted sintered samples. Hardness increased with the concentration of carbides in the Ni-matrix. The flexural strength also increased by adding the carbides. The decline was larger for the sample with addition of 5% 5% TaC and NbC. In general, compositions containing added carbide 10% showed less porous and more uniform distribution of carbides in the nickel matrix microstructural appearance. Thus, both added carbide and plasma sintering improved density, hardness, flexural strength and microstructural appearance of the composites