954 resultados para Nb-steels


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid method was used to study the effect of carbon content on the kinetics of post-deformation softening, t50, in Nb-steels. The hot deformation behaviour of austenite was not affected by carbon. However, the t50 was influenced by the carbon with different effects in different temperature regimes. At deformation temperatures above the non-recrystallization temperature, Tnr, carbon produced a small change in the softening behaviour. However, the t50 was significantly retarded with increasing carbon content at deformation temperatures lower than Tnr, due to Nb(C,N) precipitates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deformation and recrystallization behaviour of a range of Nb microalloyed steels has been studied using hot torsion. This work focuses on the change from strain dependent to strain independent recrystallization behaviour as a function of the alloy content, initial microstructure and deformation conditions. It is found that there is a complex interaction between deformation, recrystallization and strain induced precipitation, which has significant implications for controlled rolling in hot strip and plate mills. The data also revealed that the pre-existing precipitates did not influence the behaviour of post deformation softening.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using a physically based model, the microstructural evolution of Nb microalloyed steels during rolling in SSAB Tunnplåt’s hot strip mill was modeled. The model describes the evolution of dislocation density, the creation and diffusion of vacancies, dynamic and static recovery through climb and glide, subgrain formation and growth, dynamic and static recrystallization and grain growth. Also, the model describes the dissolution and precipitation of particles. The impeding effect on grain growth and recrystallization due to solute drag and particles is accounted for. During hot strip rolling of Nb steels, Nb in solid solution retards recrystallization due to solute drag and at lower temperatures strain-induced precipitation of Nb(C,N) may occur which effectively retard recrystallization. The flow stress behavior during hot rolling was calculated where the mean flow stress values were calculated using both the model and measured mill data. The model showed that solute drag has an essential effect on recrystallization during hot rolling of Nb steels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of composition and processing schedule on the microstructure of C-Mn-Si-Mo-(Al)-(Nb) steels containing nano-bainite was studied using transmission electron microscopy (TEM) and atom probe tomography (APT). The major phase formed in all steels was nano-bainite. However, the steels with lower carbon and alloying addition content subjected to TMP had better mechanical properties than high alloyed steel after isothermal treatment. The presence of ferrite in the microstructure can improve not only ductility but lead to the formation of retained austenite with optimum chemical stability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hot compression tests were carried out on 9Cr–Nb–V heat resistant steels in the temperature range of 600–1200 °C and the strain rate range of 10−2–100 s−1 to study their deformation characteristics. The full recrystallization temperature and the carbon-free bainite phase transformation temperature were determined by the slope-change points in the curve of mean flow stress versus the inverse of temperature. The parameters of the constitutive equation for the experimental steels were calculated, including the stress exponent and the activation energy. The lower carbon content in steel would increase the fraction of precipitates by increasing the volume of dynamic strain-induced (DSIT) ferrite during deformation. The ln(εc) versus ln(Z) and the ln(σc) versus ln(Z) plots for both steels have similar trends. The efficiency of power dissipation maps with instability maps merged together show excellent workability from the strain of 0.05 to 0.6. The microstructure of the experimental steels was fully recrystallized upon deformation at low Z value owing to the dynamic recrystallization (DRX), and exhibited a necklace structure under the condition of 1050 °C/0.1 s−1 due to the suppression of the secondary flow of DRX. However, there were barely any DRX grains but elongated pancake grains under the condition of 1000 °C/1 s−1 because of the suppression of the metadynamic recrystallization (MDRX).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Continuous and discontinuous cooling tests were performed using a quench deformation dilatometer to develop a comprehensive understanding of the structural and kinetic aspects of the bainite transformation in low carbon TRIP (transformation induced plasticity) steels as a function of thermomechanical processing and composition. Deformation in the unrecrystallised austenite region refined the ferrite grain size and increased the ferrite and bainite transformation temperatures for cooling rates from 10 to 90 K s-1. The influence of niobium on the transformation kinetics was also investigated. Niobium increases the ferrite start transformation temperature, refines the ferrite microstructure, and stimulates the formation of acicular ferrite. The effect of the bainite isothermal transformation temperature on the final microstructure of steels with and without a small addition of niobium was studied. Niobium promotes the formation of stable retained austenite, which influences the mechanical properties of TRIP steels. The optimum mechanical properties were obtained after isothermal holding at 400°C in the niobium steel containing the maximum volume fraction of retained austenite with acicular ferrite as the predominant second phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two manganese steels were investigated: Fe-19.7%Mn (VM339A) and Fe-19.7%Mn stabilized with 0.056%C, 0.19%Ti and 0.083%Al (VM339B). The toughness of VM339A was higher than VM339B, but VM339B had higher hardness. Tempering does not affect the toughness of the alloys. SEM images of the fracture surface for both the alloys revealed ductile fractures. A further alloy with a lower manganese content, Fe-8.46%Mn-0.24%Nb-0.038%C, and thus even lower cost than the conventional 3.5Ni cryogenic steel, was tested for its impact toughness after heat treatment at 600°C, giving promising results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two Fe-0.2C-1.55Mn-1.5Si (in wt pet) steels, with and without the addition of 0.039Nb (in wt pet), were studied using laboratory rolling-mill simulations of controlled thermomechanical processing. The microstructures of all samples were characterized by optical metallography, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The microstructural behavior of phases under applied strain was studied using a heat-tinting technique. Despite the similarity in the microstructures of the two steels (equal amounts of polygonal ferrite, carbide-free bainite, and retained austenite), the mechanical properties were different. The mechanical properties of these transformation-induced-plasticity (TRIP) steels depended not only on the individual behavior of all these phases, but also on the interaction between the phases during deformation. The polygonal ferrite and bainite of the C-Mn-Si steel contributed to the elongation more than these phases in the C-Mn-Si-Nb-steel. The stability of retained austenite depends on its location within the microstructure, the morphology of the bainite, and its interaction with other phases during straining. Granular bainite was the bainite morphology that provided the optimum stability of the retained austenite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rapid method has been developed to determine recrystallization kinetics of Nb microalloyed steels by interrupted hot torsion test. The softening behaviour was achieved as a function of different processing parameters. The method clearly identified three regions, where the strain dependency of the recrystallization rate varied. Firstly, at large strains the rate of recrystallization was not a function of strain; this is generally ascribed to metadynamic recrystallization. At lower strains the time to 50% recrystallization showed a power low relationship with strain, characteristic of static recrystallization. A further break point exists on the time for 50% softening curve when strain induced precipitation occurs in the material. The onset of strain induced precipitation was at strains below the strain to the peak stress at temperatures below 900°C. The experimental results were used to estimate the time for 50% softening and to anticipate the onset of the strain induced precipitation for the alloy of this study. Grain refinement of the recrystallized austenite continued to strains significantly beyond the peak stress and beyond the static to metadynamic recrystallization rate transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of additions of Nb, A1 and Mo to Fe-C-Mn-Si TRIP steels on the final microstructure and mechanical properties after simulated thermomechanical processing (TMP) has been studied. Laboratory simulations of continuous cooling during TMP were performed using a quench deformation dilatometer, while laboratory simulations of discontinuous cooling during TMP were performed using a hot rolling mill. From this a comprehensive understanding of the structural and kinetic aspects of the bainite transformation in these types of TRIP steels has been developed. All samples were characterised using optical microscopy and XRD. The relationships between the morphology of bainitic structure, volume fraction, stability of RA and mechanical properties were investigated.