998 resultados para Navegação de robôs móveis
Resumo:
Mestrado em engenharia electrotécnica e de computadores - Área de Especialização de Sistemas Autónomos
Resumo:
The main task and one of the major mobile robotics problems is its navigation process. Conceptualy, this process means drive the robot from an initial position and orientation to a goal position and orientation, along an admissible path respecting the temporal and velocity constraints. This task must be accomplished by some subtasks like robot localization in the workspace, admissible path planning, trajectory generation and motion control. Moreover, autonomous wheeled mobile robots have kinematics constraints, also called nonholonomic constraints, that impose the robot can not move everywhere freely in its workspace, reducing the number of feasible paths between two distinct positions. This work mainly approaches the path planning and trajectory generation problems applied to wheeled mobile robots acting on a robot soccer environment. The major dificulty in this process is to find a smooth function that respects the imposed robot kinematic constraints. This work proposes a path generation strategy based on parametric polynomials of third degree for the 'x' and 'y' axis. The 'theta' orientation is derived from the 'y' and 'x' relations in such a way that the generated path respects the kinematic constraint. To execute the trajectory, this work also shows a simple control strategy acting on the robot linear and angular velocities
Resumo:
This project is comprised by an interactive mobile robotics’ environment, focused in human-robot interaction. The system was developed to work in a smartphone, with Android operating system, embedded in a small size mobile robot. Information provided by the smartphone’s camera and microp hone, as well as by proximity sensors embedded in the robot, is used as inputs of a control architecture, implemented in software. It is a behavior-based and receptive to human commands control architecture, to assist the robot’s navigation. The robot is controlled by its own behaviors or by commands em it ted by humans
Resumo:
The use of mobile robots in the agriculture turns out to be interesting in tasks of cultivation and application of pesticides in minute quantities to reduce environmental pollution. In this paper we present the development of a system to control an autonomous mobile robot navigation through tracks in plantations. Track images are used to control robot direction by preprocessing them to extract image features, and then submitting such characteristic features to a support vector machine to find out the most appropriate route. As the overall goal of the project to which this work is connected is the robot control in real time, the system will be embedded onto a hardware platform. However, in this paper we report the software implementation of a support vector machine, which so far presented around 93% accuracy in predicting the appropriate route.
Resumo:
Oil exploration at great depths requires the use of mobile robots to perform various operations such as maintenance, assembly etc. In this context, the trajectory planning and navigation study of these robots is relevant, as the great challenge is to navigate in an environment that is not fully known. The main objective is to develop a navigation algorithm to plan the path of a mobile robot that is in a given position (
Resumo:
Oil exploration at great depths requires the use of mobile robots to perform various operations such as maintenance, assembly etc. In this context, the trajectory planning and navigation study of these robots is relevant, as the great challenge is to navigate in an environment that is not fully known. The main objective is to develop a navigation algorithm to plan the path of a mobile robot that is in a given position (
Resumo:
This work proposes a new autonomous navigation strategy assisted by genetic algorithm with dynamic planning for terrestrial mobile robots, called DPNA-GA (Dynamic Planning Navigation Algorithm optimized with Genetic Algorithm). The strategy was applied in environments - both static and dynamic - in which the location and shape of the obstacles is not known in advance. In each shift event, a control algorithm minimizes the distance between the robot and the object and maximizes the distance from the obstacles, rescheduling the route. Using a spatial location sensor and a set of distance sensors, the proposed navigation strategy is able to dynamically plan optimal collision-free paths. Simulations performed in different environments demonstrated that the technique provides a high degree of flexibility and robustness. For this, there were applied several variations of genetic parameters such as: crossing rate, population size, among others. Finally, the simulation results successfully demonstrate the effectiveness and robustness of DPNA-GA technique, validating it for real applications in terrestrial mobile robots.
Resumo:
This work proposes a new autonomous navigation strategy assisted by genetic algorithm with dynamic planning for terrestrial mobile robots, called DPNA-GA (Dynamic Planning Navigation Algorithm optimized with Genetic Algorithm). The strategy was applied in environments - both static and dynamic - in which the location and shape of the obstacles is not known in advance. In each shift event, a control algorithm minimizes the distance between the robot and the object and maximizes the distance from the obstacles, rescheduling the route. Using a spatial location sensor and a set of distance sensors, the proposed navigation strategy is able to dynamically plan optimal collision-free paths. Simulations performed in different environments demonstrated that the technique provides a high degree of flexibility and robustness. For this, there were applied several variations of genetic parameters such as: crossing rate, population size, among others. Finally, the simulation results successfully demonstrate the effectiveness and robustness of DPNA-GA technique, validating it for real applications in terrestrial mobile robots.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Navigation based on visual feedback for robots, working in a closed environment, can be obtained settling a camera in each robot (local vision system). However, this solution requests a camera and capacity of local processing for each robot. When possible, a global vision system is a cheapest solution for this problem. In this case, one or a little amount of cameras, covering all the workspace, can be shared by the entire team of robots, saving the cost of a great amount of cameras and the associated processing hardware needed in a local vision system. This work presents the implementation and experimental results of a global vision system for mobile mini-robots, using robot soccer as test platform. The proposed vision system consists of a camera, a frame grabber and a computer (PC) for image processing. The PC is responsible for the team motion control, based on the visual feedback, sending commands to the robots through a radio link. In order for the system to be able to unequivocally recognize each robot, each one has a label on its top, consisting of two colored circles. Image processing algorithms were developed for the eficient computation, in real time, of all objects position (robot and ball) and orientation (robot). A great problem found was to label the color, in real time, of each colored point of the image, in time-varying illumination conditions. To overcome this problem, an automatic camera calibration, based on clustering K-means algorithm, was implemented. This method guarantees that similar pixels will be clustered around a unique color class. The obtained experimental results shown that the position and orientation of each robot can be obtained with a precision of few millimeters. The updating of the position and orientation was attained in real time, analyzing 30 frames per second
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Utilizar robôs autônomos capazes de planejar o seu caminho é um desafio que atrai vários pesquisadores na área de navegação de robôs. Neste contexto, este trabalho tem como objetivo implementar um algoritmo PSO híbrido para o planejamento de caminhos em ambientes estáticos para veículos holonômicos e não holonômicos. O algoritmo proposto possui duas fases: a primeira utiliza o algoritmo A* para encontrar uma trajetória inicial viável que o algoritmo PSO otimiza na segunda fase. Por fim, uma fase de pós planejamento pode ser aplicada no caminho a fim de adaptá-lo às restrições cinemáticas do veículo não holonômico. O modelo Ackerman foi considerado para os experimentos. O ambiente de simulação de robótica CARMEN (Carnegie Mellon Robot Navigation Toolkit) foi utilizado para realização de todos os experimentos computacionais considerando cinco instâncias de mapas geradas artificialmente com obstáculos. O desempenho do algoritmo desenvolvido, A*PSO, foi comparado com os algoritmos A*, PSO convencional e A* Estado Híbrido. A análise dos resultados indicou que o algoritmo A*PSO híbrido desenvolvido superou em qualidade de solução o PSO convencional. Apesar de ter encontrado melhores soluções em 40% das instâncias quando comparado com o A*, o A*PSO apresentou trajetórias com menos pontos de guinada. Investigando os resultados obtidos para o modelo não holonômico, o A*PSO obteve caminhos maiores entretanto mais suaves e seguros.
Resumo:
O controle de robôs móveis não holonômicos apresenta como principal desafio o fato de estes sistemas não serem estabilizáveis em um ponto através de uma realimentação de estados suave e invariante no tempo, conforme o Teorema de Brockett. Para contornar este resultado, técnicas clássicas utilizam leis de controle variante no tempo ou não suaves (descontínuas). Entretanto, estas técnicas não prevêem durante o cálculo da lei de controle restrições nas variáveis do sistema e assim, muitas vezes, geram entradas de controle que são incompatíveis com uma implementação real. Neste trabalho são desenvolvidos algoritmos de controle preditivo baseado em modelo (MPC) para o controle de robôs móveis não holonômicos dotados de rodas. No MPC, restrições nas variáveis de estado e de controle podem ser consideradas durante o cálculo da lei de controle de uma forma bastante direta. Além disso, o MPC gera implicitamente uma lei de controle que respeita as condições de Brockett. Como o modelo do robô é não linear, é necessário um algoritmo de MPC não linear (NMPC). Dois objetivos são estudados: (1) estabilização em um ponto e (2) rastreamento de trajetória. Através de extensivos resultados de simulação, é mostrada a eficácia da técnica. Referente ao primeiro problema, é feita uma análise comparativa com algumas leis clássicas de controle de robôs móveis, mostrando que o MPC aplicado aqui apresenta uma melhor performance com relação às trajetórias de estado e de controle. No problema de rastreamento de trajetória, é desenvolvida uma técnica linear, alternativa ao NMPC, utilizando linearizações sucessivas ao longo da trajetória de referência, a fim de diminuir o esforço computacional necessário para o problema de otimização. Para os dois problemas, análises referentes ao esforço computacional são desenvolvidas com o intuito de mostrar a viabilidade das técnicas de MCP apresentadas aqui em uma implementação real.