948 resultados para Natural rubber membranes
Resumo:
Green chemistry is an innovative way to approach the synthesis of metallic nanostructures employing eco-friendly substances (natural compounds) acting as reducing agents. Usually, slow kinetics are expected due to, use of microbiological materials. In this report we study composites of natural rubber (NR) membranes fabricated using latex from Hevea brasiliensis trees (RRIM 600) that works as reducing agent for the synthesis of gold nanoparticles. A straight and clean method is presented, to produce gold nanoparticles (AuNP) in a flexible substrate or in solution, without the use of chemical reducing reagents, and at the same time providing good size's homogeneity, reproducibility, and stability of the composites. Copyright © 2013 Flávio C. Cabrera et al.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The controlled release of drugs can be efficient if a suitable encapsulation procedure is developed, which requires biocompatible materials to hold and release the drug. In this study, a natural rubber latex (NRL) membrane is used to deliver metronidazole (MET), a powerful antiprotozoal agent. MET was found to be adsorbed on the NRL membrane, with little or no incorporation into the membrane bulk, according to energy dispersive X-ray spectroscopy. X-ray diffraction and FTIR spectroscopy data indicated that MET retained its structural and spectroscopic properties upon encapsulation in the NRL membrane, with no molecular-level interaction that could alter the antibacterial activity of MET. More importantly, the release time of MET in a NRL membrane in vitro was increased from the typical 6-8 h for oral tablets or injections to ca. 100 h. The kinetics of the drug release could be fitted with a double exponential function, with two characteristic times of 3.6 and 29.9 h. This is a demonstration that the induced angiogenesis known to be provided by NRL membranes can be combined with a controlled release of drugs, whose kinetics can be tailored by modifying experimental conditions of membrane fabrication for specific applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Natural rubber/gold nanoparticles membranes (NR/Au) were studied by ultrasensitive detection and chemical analysis through surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering in our previous work (Cabrera et al., J. Raman Spectrosc. 2012, 43, 474). This article describes the studies of thermal stability and mechanical properties of SERS-active substrate sensors. The composites were prepared using NR membranes obtained by casting the latex solution as an active support (reducing/establishing agents) for the incorporation of colloidal gold nanoparticles (AuNPs). The nanoparticles were synthesized by in situ reduction at different times. The characterization of these sensors was carried out by thermogravimetry, differential scanning calorimetry, scanning electron microscopy (SEM) microscopy, and tensile tests. It is suggested an influence of nanoparticles reduction time on the thermal degradation of NR. There is an increase in thermal stability without changing the chemical properties of the polymer. For the mechanical properties, the tensile rupture was enhanced with the increase in the amount of nanoparticles incorporated in the material. © 2013 Wiley Periodicals, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Natural rubber latex from Hevea brasiliensis has interesting characteristics related to this work such as: it is easy to manipulate, low cost, can stimulate the natural angiogenesis, is a biocompatible material and presents high mechanical resistance. The aim of this study was to develop a novel sustained delivery system for Stryphnodendron sp. based on Natural Rubber Latex (NRL) membranes and to study the Stryphnodendron sp. delivery system behavior. Stryphnodendron sp., commonly known as barbatimao is extensively used in folk medicine for the treatment of diarrhoea, gynaecological problems and for healing wounds. The stem bark of this species is mentioned in the Brazilian Pharmacopeia with a content of at least 20% of tannins. Previous studies showed significant cicatrizant properties, anti-inflammatory activity and gastric anti-ulcerogenic effects for the stem bark crude extract. One possible way to accelerate the tissue repair process, it was incorporated the Stryphnodendron sp. extract in NRL membranes. Stryphnodendron sp extract was incorporated into the NRL, by mixing it in solution for in vitro protein delivery experiments. Results show that the NRL membrane can release Stryphnodendron sp. for up to 49.89% of its Stryphnodendron sp. content for up 400 h. The kinetics of the extract release could be fitted with double exponential function, with two characteristic times of 0.78 and 133.22 h. In this study, we demonstrated that the induced angiogenesis provided by NRL membranes combined with a controlled release of extract is relevant for biomedical applications.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)