938 resultados para Natural products -- Synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many fungi, lichens, and bacteria produce xanthones (derivatives of 9H-xanthen-9-one, “xanthone” from the Greek “xanthos”, for “yellow”) as secondary metabolites. Xanthones are typically polysubstituted and occur as either fully aromatized, dihydro-, tetrahydro-, or, more rarely, hexahydro-derivatives. This family of compounds appeals to medicinal chemists because of their pronounced biological activity within a notably broad spectrum of disease states, a result of their interaction with a correspondingly diverse range of target biomolecules. This has led to the description of xanthones as “privileged structures”.(1) Historically, the total synthesis of the natural products has mostly been limited to fully aromatized targets. Syntheses of the more challenging partially saturated xanthones have less frequently been reported, although the development in recent times of novel and reliable methods for the construction of the (polysubstituted) unsaturated xanthone core holds promise for future endeavors. In particular, the fascinating structural and biological properties of xanthone dimers and heterodimers may excite the synthetic or natural product chemist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double or nothing! Recently the total ynthesis of secalonic acids A and D was reported. This work and other natural product syntheses with a dimerization step as a common feature are featured in this highlight. The significant biological activity of the secalonic acids and the fact that their synthesis has fascinated synthetic chemists for the past forty years make this work a milestone in natural product synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxydisulfuric acid oxidation of testosterone propionate, progesterone, and cholest-4-en-3-one has been shown to yield 3-oxo-17β-hydroxy-4-oxa-5α-androstane (I, after saponification), 3,20-dioxo-4-oxa-5α-pregnane (V) and 3-oxo-4-oxa-5α-cholestane (VII) respectively. Boron trifluoride etherate-lithium aluminum hydride reduction of δ-lactones I, V, and VII led to the corresponding tetrahydropyran derivatives (IIb, VIa, and VIII). Similar reduction of 3β-hydroxy-17-oxo-17a-oxa-D-homo-5α-androstane (XI) gave 3β-hydroxy-17a-oxa-D-homo-5α-androstane (XIIa). Diborane-boron trifluoride etherate was also found to reduce lactones to cyclic ethers, while reduction with diborane gave hemiacetals. Evidence in support of the structures and stereochemistry assigned to the lactones and their unusual reduction products has been summarized. A tentative mechanism is proposed for lactone → ether reduction employing diborane-boron trifluoride etherate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic studies directed towards allo-cedrane based, tashironin sibling natural products, involving some deft functional group manipulations on a preformed tetracyclic scaffold, are delineated. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The propellane alkaloids comprise a large class of natural products that possess varying degrees of structural complexity and biological activity. The earliest of these to be isolated was acutumine, a chlorinated alkaloid that has been shown to exhibit selective T-cell cytotoxicity and antiamnesic properties. Alternatively, the hasubanan family of natural products has garnered considerable attention from the synthetic community in part due to its structural similarities to morphine. While these alkaloids have been the subject of numerous synthetic studies over the last forty years, very few enantioselective total syntheses have been reported to date.

As part of a research program directed towards the synthesis of various alkaloid natural products, we have developed a unified strategy for the preparation of the hasubanan and acutumine alkaloids. Specifically, a highly diastereoselective 1,2-addition of organometallic reagents to benzoquinone-derived tert-butanesulfinimines was established, which provides access to enantioenriched 4-aminocyclohexadienone products. This methodology enabled the enantioselective construction of functionalized dihydroindolones, which were found to undergo intramolecular Friedel-Crafts conjugate additions to furnish the propellane cores of several hasubanan alkaloids. As a result of these studies, the first enantioselective total syntheses of 8-demethoxyrunanine and cepharatines A, C, and D were accomplished in 9-11 steps from commercially available starting materials.

More recent efforts have focused on applying the sulfinimine methodology to the synthesis of a more structurally complex propellane alkaloid, acutumine. Extensive studies have determined that a properly functionalized dihydroindolone undergoes a photochemical [2+2] cycloaddition followed by a lactone fragmentation/Dieckmann cyclization to establish the carbocyclic framework of the natural product. The preparation of more appropriately oxidized propellane intermediates is currently under investigation, and is anticipated to facilitate our synthetic endeavors toward acutumine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diketopiperazine (DKP) motif is found in a wide range of biologically active natural products. This work details our efforts toward two classes of DKP-containing natural products.

Class one features the pyrroloindoline structure, derived from tryptophans. Our group developed a highly enantioselective (3 + 2) formal cycloaddition between indoles and acrylates to provide pyrroloindoline products possessing three stereocenters. Utilizing this methodology, we accomplished asymmetric total synthesis of three natural products: (–)-lansai B, (+)-nocardioazines A and B. Total synthesis of (–)-lansai B was realized in six steps, and featured an amino acid dimerization strategy. The total synthesis of (+)-nocardioazine B was also successfully completed in ten steps. Challenges were met in approaching (+)-nocardioazine A, where a seemingly easy last-step epoxidization did not prove successful. After re-examining our synthetic strategy, an early-stage epoxidation strategy was pursued, which eventually yielded a nine-step total synthesis of (+)-nocardioazine A.

Class two is the epidithiodiketopiperazine (ETP) natural products, which possesses an additional episulfide bridge in the DKP core. With the goal of accessing ETPs with different peripheral structures for structure-activity relationship studies, a highly divergent route was successfully developed, which was showcased in the formal synthesis of (–)-emethallicin E and (–)-haematocin, and the first asymmetric synthesis of (–)-acetylapoaranotin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this thesis is to outline the synthetic chemistry involved in the preparation of a range of novel lanostane and cholestane derivatives, and subsequent investigation into their biological activity in cancer cells. The biological results obtained throughout the project have driven the strategic synthesis of new compounds, in an effort to optimise the anti cancer potential of lanostane and cholestane derivatives. The first chapter begins with an overview of steroidal compounds and details a literature review of the natural sources of these moieties, as well as their biosynthesis and reported synthetic derivatives. The biological activity of interesting natural and synthetic analogues is also discussed. In addition, an insight into some currently prescribed pharmaceutical compounds, with functional groups relevant to this project, is presented. The second chapter discusses the methods employed for the synthesis of these novel lanostane and cholestane derivatives, and comprises three main sections. Firstly, various oxidation products of lanosterol are synthesised, mainly via epoxidations of the C-8,9 and C- 24,25 alkenes, and also allylic oxidations at these positions. Secondly, amine derivatives of lanosterol are formed by cleaving the lanostane side chain, thereby yielding a new cholestane nucleus, and performing several reductive aminations on the resulting key aldehyde intermediates. Various amines such as piperidine, morpholine, diethylamine and aniline are employed in the reductive amination reactions to yield novel cholestane steroids with amine side chains. Finally, starting from stigmasterol and proceeding with the same methodology of cleaving the steroidal side chain and subsequently performing reductive aminations, novel cholestane derivatives of the biologically active amines are synthesised. The cytotoxicity of these compounds against CaCo-2 and U937 cell lines is presented in terms of percentage viability of cells, IC50 value and apoptosis. The MTT assay is used to determine the percentage viability of cells, and the IC50 data is generated from the MTT results. Apoptosis is measured in terms of fold increase relative to a carrier control. In summary, the compounds formed are discussed in terms of chemical synthesis, spectroscopic interpretation and biological activity. The main reaction pathways involved in the chemistry within this project are various oxidations and reductive amination. The final chapter is a detailed account of the full experimental procedures for the compounds synthesised during this work, including characterisation using spectroscopic and analytical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principle theme of this thesis was the synthesis of bioactive compounds. To this end, this work was focus on two main projects. The first one, which was carried out in the Department of Chemistry of the University of Girona under the supervision of Dr Montserrat Heras, concerned the synthesis of new unnatural amino acids bearing a pyrimidine ring within their side chain for incorporation into the antimicrobial peptide BP100 following a rational design in order to improve its biological profile. On the other hand, the second chapter of this thesis was developed in collaboration with the Laboratoire de Chimie Organique (ESPCI-ParisTech, Paris, France) under the guidance of Pr Janine Cossy and Dr Arseniyadis. This chapter was centered on the total synthesis of three marine natural products with complex structures and interesting biological activities: acremolide B, (–) bitungolide F and lyngbouilloside.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expedient synthetic approaches to the highly functionalized polycyclic alkaloids communesin F and perophoramidine are described using a unified approach featuring a key decarboxylative allylic alkylation to access a crucial and highly congested 3,3-disubstituted oxindole. Described are two distinct, stereoselective alkylations that produce structures in divergent diastereomeric series possessing the critical vicinal all-carbon quaternary centers needed for each synthesis. Synthetic studies toward these challenging core structures have revealed a number of unanticipated modes of reactivity inherent to these complex alkaloid scaffolds. Finally, a previously unknown mild and efficient deprotection protocol for the o-nitrobenzyl group is disclosed – this serendipitous discovery permitted a concise endgame for the formal syntheses of both communesin F and perophoramidine.

In addition, the atroposelective synthesis of PINAP ligands has been accomplished via a palladium-catalyzed C–P coupling process through dynamic kinetic resolution. These catalytic conditions allow access to a wide variety of alkoxy- and benzyloxy-substituted PINAP ligands in high enantiomeric excess.

An efficient and exceptionally mild intramolecular nickel-catalyzed carbon–oxygen bond-forming reaction between vinyl halides and primary, secondary, and tertiary alcohols has been achieved. This operationally simple method allows direct access to cyclic vinyl ethers in high yields in a single step.

Finally, synthetic studies toward polycyclic ineleganolide are described. The entire fragmented carbon framework has been constructed from this work. Highly (Z)-selective olefination was achieved by the method by the Ando group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diterpenoid constituents of the Isodon plants have attracted reasearchers interested in both their chemical structures and biological properties for more than a half-century. In recent years, the isolations of new members displaying previously unprecedented ring systems and highly selective biological properties have piqued interest from the synthetic community in this class of natural products.

Reported herein is the first total synthesis of such a recently isolated diterpenoid, (–)-maoecrystal Z. The principal transformations implemented in this synthesis include two highly diastereoselective radical cyclization reactions: a Sm(II)-mediated reductive cascade cyclization, which forms two rings and establishes four new stereocenters in a single step, and a Ti(III)-mediated reductive epoxide-acrylate coupling that yields a functionalized spirolactone product, which forms a core bicycle of maoecrystal Z.

The preparation of two additional ent-kauranoid natural products, (–)-trichorabdal A and (–)-longikaurin E, is also described from a derivative of this key spirolactone. These syntheses are additionally enabled by the palladium-mediated oxidative cyclization reaction of a silyl ketene acetal precursor that is used to install the bridgehead all-carbon quaternary stereocenter and bicyclo[3.2.1]octane present in each natural product. These studies have established a synthetic relationship among three architecturally distinct ent-kaurane diterpenoids and have forged a path for the preparation of interesting unnatural ent-kauranoid structural analogs for more thorough biological study.