997 resultados para Natural hydraulic lime


Relevância:

100.00% 100.00%

Publicador:

Resumo:

3rd Historic Mortars Conference, 11-14 September 2013, Glasgow, Scotland

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Construction and Building Materials 51 (2014) 287–294

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Construction and Building Materials 54 (2014) 378–384

Relevância:

100.00% 100.00%

Publicador:

Resumo:

9th International Masonry Conference 2014, 7-9 July, Universidade do Minho, Guimarães

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese para obtenção do Grau de Doutor em Engenharia Civil, Especialidade Ciências da Construção

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of wastes and industrial by-products as building materials is an important issue in order to decrease costs with waste management and the embodied energy of building products. In this study scrap tire rubber was used as additional aggregate of mortars based on natural hydraulic lime NHL 3.5 and natural sand. Different particle size fractions and proportions of scrap tire rubber were used: a mix obtained directly from industry and separated fine, medium and coarse fractions; 0 %, 18 %, 36 % and 54 % of the weight of binder, corresponding to 2.5 %, 5 % and 7.5 % of the weight of sand. As mortars based on NHL specifications became stricter with the current version of EN 459–1:2015, the influence of the rubber’s additions on the mortars’ fresh state, mechanical and physical performance is presented in this work: flow table consistency, water retention, dynamic elasticity modulus, flexural and compressive strength, open porosity and bulk density, capillary absorption, drying and thermal conductivity are studied. The use of the rubber mix coming from the waste tire industry seems advantageous and may open possibilities for use as raw material by the mortars industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intern.Conference AZULEJAR, Univ. Aveiro, 10-12 October 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3rd Historic Mortars Conference, 11-14 September 2013, Glasgow, Scotland

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESTAPIA 2012 - Int. Conf. on Rammed Earth Conservation, Valencia, 21-23 June 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fig. 1. Classical hydraulic jump with partially developed inflow conditions. F1 = 13.6, V1 = 4.7 m/s, B = 0.25 m, h = 0.020 mm, d1 = 0.012 mm, Q = 14 L/s. Photo courtesy of Dr. Hubert Chanson. published in: Geomorphology Volume 82, Issues 1-2, 6 December 2006, Pages 146-159 The Hydrology and Geomorphology of Bedrock Rivers doi:10.1016/j.geomorph.2005.09.024 Submerged and unsubmerged natural hydraulic jumps in a bedrock step-pool mountain channel Brett L. Vallé and Gregory B. Pasternacka

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3rd Historic Mortars Conference, 11-14 September 2013, Glasgow, Scotland

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of wastes and industrial by-products as building materials is an important issue in order to decrease costs with waste management and the embodied energy of building products. Scrap tire rubber has been studied as aggregate for cementitious materials. Natural hydraulic limes are natural binders with particular characteristics of both air and hydraulic binders. Their specifications became stricter with the last version of EN 459-1:2010. In this study scrap tire rubber was used as additional aggregate of mortars, based on NHL3.5 and natural sand. Different particle size fractions and proportions of scrap tire rubber were used: a mix obtained almost directly from industry (only after sieving for preparation of particle sizes similar to mortar aggregate) and separated fine, medium and coarse fractions; 0%, 18%, 36% and 54% weight of binder, corresponding to 2.5%, 5% and 7.5% weight of sand. The influence of the rubbers´ additions on the mortars´ fresh state, mechanical and physical performance is presented, namely by flow table consistency, water retention, fresh bulk density, dynamic elasticity modulus, flexural and compressive strength, open porosity and bulk density, capillary absorption, drying and thermal conductivity. The use of the rubber mix coming from the waste tire industry seems advantageous and may open possibilities for use as raw material by the mortars industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All over the world, many earth buildings are deteriorating due to lack of maintenance and repair. Repairs on rammed earth walls are mainly done with mortars, by rendering application; however, often the repair is inadequate, resorting to the use of incompatible materials, including cement-based mortars. It has been observed that such interventions, in walls that until that day only had presented natural ageing issues, created new problems, much more dangerous for the building than the previous ones, causing serious deficiencies in this type of construction. One of the problems is that the detachment of the new cement-based mortar rendering only occurs after some time but, until that occurrence, degradations develop in the wall itself. When the render detaches, instead of needing only a new render, the surface has to be repaired in depth, with a repair mortar. Consequently, it has been stablished that the renders, and particularly repair mortars, should have physical, mechanical and chemical properties similar to those of the rammed earth walls. This article intends to contribute to a better knowledge of earth-based mortars used to repair the surface of rammed earth walls. The studied mortars are based on four types of earth: three of them were collected from non-deteriorated parts of walls of unstabilized rammed earth buildings located in Alentejo region, south of Portugal; the fourth is a commercial earth, consisting mainly of clay. Other components were also used, particularly: sand to control shrinkage; binders stabilizers such as dry hydrated air-lime, natural hydraulic lime, Portland cement and natural cement; as well as natural vegetal fibers (hemp fibers). The experimental analysis of the mortars in the fresh state consisted in determining the consistency by flow table and the bulk density. In the hardened state, the tests made it possible to evaluate the following properties: linear and volumetric shrinkage; capillary water absorption; drying capacity; dynamic modulus of elasticity; flexural and compressive strength.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hydraulic binders play a vital role in the economic and social development because they are essential components of concrete, the most widely used construction material. Nowadays, Portland cement is the most predominantly used hydraulic binder due to its properties and widespread availability. Cement manufacture consumes large amount of non-renewable raw materials and energy, and it is a carbon-intensive process. Many efforts are, therefore, being undertaken towards the developing “greener” hydraulic binders. Concomitantly, binders must also correspond to market demand in terms of performance and aesthetic as well as fulfill mandatory regulations. In order to pursue these goals, different approaches have been followed including the improvement of the cement manufacturing process, production of blended cements, and testing innovative hydraulic binders with a different chemistry. This chapter presents a brief history of hydraulic binder’s discovery and use as well as the environmental and economic context of cement industry. It, then, describes the chemistry and properties of currently most used hydraulic binders—common cements and hydraulic limes—and that of the more promising binders for future applications, namely special Portland cements, aluminous cements, calcium sulfoaluminate cements, and alkali-activated cements.