987 resultados para Natural Numbers
Resumo:
Mode of access: Internet.
Resumo:
The topic of the present work is to study the relationship between the power of the learning algorithms on the one hand, and the expressive power of the logical language which is used to represent the problems to be learned on the other hand. The central question is whether enriching the language results in more learning power. In order to make the question relevant and nontrivial, it is required that both texts (sequences of data) and hypotheses (guesses) be translatable from the “rich” language into the “poor” one. The issue is considered for several logical languages suitable to describe structures whose domain is the set of natural numbers. It is shown that enriching the language does not give any advantage for those languages which define a monadic second-order language being decidable in the following sense: there is a fixed interpretation in the structure of natural numbers such that the set of sentences of this extended language true in that structure is decidable. But enriching the original language even by only one constant gives an advantage if this language contains a binary function symbol (which will be interpreted as addition). Furthermore, it is shown that behaviourally correct learning has exactly the same power as learning in the limit for those languages which define a monadic second-order language with the property given above, but has more power in case of languages containing a binary function symbol. Adding the natural requirement that the set of all structures to be learned is recursively enumerable, it is shown that it pays o6 to enrich the language of arithmetics for both finite learning and learning in the limit, but it does not pay off to enrich the language for behaviourally correct learning.
Resumo:
This paper discusses how fundamentals of number theory, such as unique prime factorization and greatest common divisor can be made accessible to secondary school students through spreadsheets. In addition, the three basic multiplicative functions of number theory are defined and illustrated through a spreadsheet environment. Primes are defined simply as those natural numbers with just two divisors. One focus of the paper is to show the ease with which spreadsheets can be used to introduce students to some basics of elementary number theory. Complete instructions are given to build a spreadsheet to enable the user to input a positive integer, either with a slider or manually, and see the prime decomposition. The spreadsheet environment allows students to observe patterns, gain structural insight, form and test conjectures, and solve problems in elementary number theory.
Resumo:
The most prominent objective of the thesis is the development of the generalized descriptive set theory, as we call it. There, we study the space of all functions from a fixed uncountable cardinal to itself, or to a finite set of size two. These correspond to generalized notions of the universal Baire space (functions from natural numbers to themselves with the product topology) and the Cantor space (functions from natural numbers to the {0,1}-set) respectively. We generalize the notion of Borel sets in three different ways and study the corresponding Borel structures with the aims of generalizing classical theorems of descriptive set theory or providing counter examples. In particular we are interested in equivalence relations on these spaces and their Borel reducibility to each other. The last chapter shows, using game-theoretic techniques, that the order of Borel equivalence relations under Borel reduciblity has very high complexity. The techniques in the above described set theoretical side of the thesis include forcing, general topological notions such as meager sets and combinatorial games of infinite length. By coding uncountable models to functions, we are able to apply the understanding of the generalized descriptive set theory to the model theory of uncountable models. The links between the theorems of model theory (including Shelah's classification theory) and the theorems in pure set theory are provided using game theoretic techniques from Ehrenfeucht-Fraïssé games in model theory to cub-games in set theory. The bottom line of the research declairs that the descriptive (set theoretic) complexity of an isomorphism relation of a first-order definable model class goes in synch with the stability theoretical complexity of the corresponding first-order theory. The first chapter of the thesis has slightly different focus and is purely concerned with a certain modification of the well known Ehrenfeucht-Fraïssé games. There we (me and my supervisor Tapani Hyttinen) answer some natural questions about that game mainly concerning determinacy and its relation to the standard EF-game
Resumo:
Nesta dissertação é apresentada uma abordagem a polinómios de Appell multidimensionais dando-se especial relevância à estrutura da sua função geradora. Esta estrutura, conjugada com uma escolha adequada de ordenação dos monómios que figuram nos polinómios, confere um carácter unificador à abordagem e possibilita uma representação matricial de polinómios de Appell por meio de matrizes particionadas em blocos. Tais matrizes são construídas a partir de uma matriz de estrutura simples, designada matriz de criação, subdiagonal e cujas entradas não nulas são os sucessivos números naturais. A exponencial desta matriz é a conhecida matriz de Pascal, triangular inferior, onde figuram os números binomiais que fazem parte integrante dos coeficientes dos polinómios de Appell. Finalmente, aplica-se a abordagem apresentada a polinómios de Appell definidos no contexto da Análise de Clifford.
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Educação Matemática na Educação Pré-escolar e nos 1.º e 2.º ciclos do Ensino Básico
Resumo:
This paper introduces and examines the logicist construction of Peano Arithmetic that can be performed into Leśniewski’s logical calculus of names called Ontology. Against neo-Fregeans, it is argued that a logicist program cannot be based on implicit definitions of the mathematical concepts. Using only explicit definitions, the construction to be presented here constitutes a real reduction of arithmetic to Leśniewski’s logic with the addition of an axiom of infinity. I argue however that such a program is not reductionist, for it only provides what I will call a picture of arithmetic, that is to say a specific interpretation of arithmetic in which purely logical entities play the role of natural numbers. The reduction does not show that arithmetic is simply a part of logic. The process is not of ontological significance, for numbers are not shown to be logical entities. This neo-logicist program nevertheless shows the existence of a purely analytical route to the knowledge of arithmetical laws.
Resumo:
'The problem of the graphic artist' is a small example of applying elementary mathematics (divisibility of natural numbers) to a real problem which we ourselves have actually experienced. It deals with the possibilities for partitioning a sheet of paper into strips. In this contribution we report on a teaching unit in grade 6 as well as on informal tests with students in school and university. Finally we analyse this example methodologically, summarise our observations with pupils and students, and draw some didactical conclusions.
Resumo:
The objective of this work if constitutes in creation a proposal for activities, in the discipline of mathematics, for the 6th year of Elementary School, that stimulates the students the develop the learning of the content of fractions, from the awareness of the insufficiency of the natural numbers for solve several problems. Thus, we prepared a set with twelve activities, starting by the comparison between measures, presenting afterward some of the meanings of fractions and ending with the operations between fractions. For so much, use has been made of materials available for use in the classroom, of forma ludic, for resolution of challenges proposed. Through these activities, it becomes possible students to recognize the necessity of using fractions for solve a amount larger of problems
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We introduce and analyse a theory of finitely stratified general inductive definitions over the natural numbers, inline image, and establish its proof theoretic ordinal, inline image. The definition of inline image bears some similarities with Leivant's ramified theories for finitary inductive definitions.
Resumo:
Bertrand Russell dio una solución lógica general a la definición de los números caracterizando al número tres como la clase que es correspondiente a todas las clases biunívocas con los grupos de tres. Para Frege la definición del número era una de las cruces de la comprensión de la aritmética. Hegel, por su parte, bajo el impulso de la triplicidad kantiana de los juicios sintéticos, teoréticos y prácticos y la influencia de la concepción trinitaria cristiana advertía que la contraposición de los opuestos al no ser contradictoria permitía el desarrollo deviniente. La aritmología pitagórica sobre los números naturales destacó la definición del tres caracterizada por su naturaleza de mediedad. Retomando estas bases de pura inteligibilidad y las especulaciones gnósticas sobre la tríada mostraremos sus proyecciones filosófico-religiosas.
Resumo:
In this article we discuss a possibility to use genetic algorithms in cryptanalysis. We developed and described the genetic algorithm for finding the secret key of a block permutation cipher. In this case key is a permutation of some first natural numbers. Our algorithm finds the exact key’s length and the key with controlled accuracy. Evaluation of conducted experiment’s results shows that the almost automatic cryptanalysis is possible.