2 resultados para Natriumdodecylsulfat
Resumo:
The aim of this study is to elucidate factors that effect growth of Sarcina lutea and Bacillus subtilis, exposed to the growth inhibitor SDS (Sodiumdodecylsulfat). Agar diffusion experiments revealed repeated, concentric zones of inhibition and stimulation upon exposure to Sodiumdodecylsulphate or to Amoxicillin. Temperature, nutrient concentration and inhibitor concentration were controlled. Formation of successively repeated zones of inhibition, stimulation, inhibition and stimulation is discussed: •The extension of the primary inhibition zone is due to the concentration of applied Sodium dodecyl sulphate.•Immediately outside the primary inhibition zone the bacteria have access to diffusing nutrients that have not been consumed in the primary inhabitation zone.•In zones of dense bacterial growth the bacteria may produce inhibiting substances, affecting growth of bacteria in adjacent zones.•In zones of dense bacterial growth the nutrients will soon become depleted, thus affecting bacteria in adjacent zones.
Resumo:
Polymer nanoparticles functionalized on the surface with photo-responsive labels were synthesized. In a first synthetic step, polystyrene was copolymerized with the cross-linker divinylbenzene and poly(ethylene glycol) acrylate in a miniemulsion, to produce nano-sized spheres (~ 60 nm radius) with terminal hydroxyl groups, which were functionalized in a subsequent synthetic step with photo-responsive labels. For this purpose, two photo-active molecular structures were separately used: anthracene, which is well known to form covalently bonded dimers upon photo-excitation; and pyrene, which only forms short lived excited state dimers (excimers). Acid derivatives of these labels (9-anthracene carboxylic acid and 1-pyrene butyric acid) were bonded to the hydroxyl terminal groups of the nanoparticles through an esterification reaction, via the intermediate formation of the corresponding acid chloride.rnThe obtained labeled nanoparticles appeared to be highly hydrophobic structures. They formed lyophobic suspensions in water, which after analysis by dynamic light scattering (DLS) and ultramicroscopic particle tracking, appeared to equilibrate as a collection of singly dispersed nanoparticles, together with a few nanoparticle aggregates. The relative amount of aggregates decreased with increasing amounts of the surfactant sodium dodecyl sulfate (SDS), thus confirming that aggregation is an equilibrated state resulting from lyophobicity. The formation of such aggregates was corroborated using scanning electron microscopy (SEM). The photo-irradiation of the lyophobic aqueous suspensions of anthracene labeled nanoparticles (An-NP) resulted in the formation of higher aggregates, as evidenced by DLS and ultramicroscopy. The obtained state of aggregation could be reverted by sonication. The possibility to re-aggregate the system in subsequent photo-excitation and sonication cycles was established. Likewise, the photo-irradiation of lyophobic aqueous suspensions of pyrene-labeled nanoparticles (Py-NP) resulted in the formation of higher aggregates, as evidenced by DLS and ultramicroscopy. These appeared to remain aggregated due to hydrophobic interactions. This system could also be re-dispersed by sonication and re-aggregated in subsequent cycles of photo-excitation and sonication.