20 resultados para Nasturtium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucosinolates are sulphur-containing glycosides found in brassicaceous plants that can be hydrolysed enzymatically by plant myrosinase or non-enzymatically to form primarily isothiocyanates and/or simple nitriles. From a human health perspective, isothiocyanates are quite important because they are major inducers of carcinogen-detoxifying enzymes. Two of the most potent inducers are benzyl isothiocyanate (BITC) present in garden cress (Lepidium sativum), and phenylethyl isothiocyanate (PEITC) present in watercress (Nasturtium officinale). Previous studies on these salad crops have indicated that significant amounts of simple nitriles are produced at the expense of the isothiocyanates. These studies also suggested that nitrile formation may occur by different pathways: (1) under the control of specifier protein in garden cress and (2) by an unspecified, non-enzymatic path in watercress. In an effort to understand more about the mechanisms involved in simple nitrile formation in these species, we analysed their seeds for specifier protein and myrosinase activities, endogenous iron content and glucosinolate degradation products after addition of different iron species, specific chelators and various heat treatments. We confirmed that simple nitrile formation was predominantly under specifier protein control (thiocyanate-forming protein) in garden cress seeds. Limited thermal degradation of the major glucosinolate, glucotropaeolin (benzyl glucosinolate), occurred when seed material was heated to >120 degrees C. In the watercress seeds, however, we show for the first time that gluconasturtiin (phenylethyl glucosinolate) undergoes a non-enzymatic, iron-dependent degradation to a simple nitrile. On heating the seeds to 120 degrees C or greater, thermal degradation of this heat-labile glucosinolate increased simple nitrile levels many fold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The setting up of methodologies that reduce the size of ice crystals and reduce or inhibit the recrystalli- sation phenomena could have an extraordinary significance in the final quality of frozen products and consequently bring out new market opportunities. In this work, the effect of an antifreeze protein type I (AFP-I), by vacuum impregnation (VI), on frozen watercress was studied. The VI pressure, samples’ weight, Hunter Lab colour, scanning electron microscopy (SEM), and a wilting test were analysed in this work. The water intake of watercress samples augmented with vacuum pressure increase. The results also showed that, independently from the vacuum pressure used, the Lab colour parameters between raw and impregnated samples were maintained, showing no significant differences (P > 0.05). A VI of 58 kPa, during 5 min, allowed impregnating the AFP-I solution (0.01 mg ml-1) into the water- cress samples. The scanning electron microscopy (SEM) analysis showed the AFP-I impregnated frozen samples with better cell wall definition and rounded cell shape with smaller ice crystals compared with the control samples. The wilting test results corroborated that AFP-I is a valuable additive, since the leaves impregnated with AFP-I showed higher turgidity compared to the control samples. The present findings will help to better understand the effect of AFP-I, particularly, on frozen water- cress microstructure and its importance as valuable food additive in frozen foods and mainly in leafy vegetables.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Young, developing fruits of nasturtium (Tropaeolum majus L.) accumulate large deposits of nonfucosylated xyloglucan (XG) in periplasmic spaces of cotyledon cells. This “storage” XG can be fucosylated by a nasturtium transferase in vitro, but this does not happen in vivo, even as a transitory signal for secretion. The only XG that is clearly fucosylated in these fruits is the structural fraction (approximately 1% total) that is bound to cellulose in growing primary walls. The two fucosylated subunits that are formed in vitro are identical to those found in structural XG in vivo. The yield of XG-fucosyltransferase activity from membrane fractions is highest per unit fresh weight in the youngest fruits, especially in dissected cotyledons, but declines when storage XG is forming. A block appears to develop in the secretory machinery of young cotyledon cells between sites that galactosylate and those that fucosylate nascent XG. After extensive galactosylation, XG traffic is diverted to the periplasm without fucosylation. The primary walls buried beneath accretions of storage XG eventually swell and lose cohesion, probably because they continue to extend without incorporating components such as fucosylated XG that are needed to maintain wall integrity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The responses of stem segments of watercress (Nasturtium officinale R. Br.) to 6-BA,NAA and 2,4-D were studied. MS medium supplemented with 2.0 mg/L 6-BA, 0.2 mg/L 2,4-D was used for callus initiation and maintenance. MS medium supplemented with 4.0 mg/L 6-BA was suitable for plant regeneration and MS medium without plant hormone supplement was used for rooting and plant propagation. For screening of salt tolerant calli, stem segments of watercress were plated onto callus initiation medium containing 1/3 natural seawater. Seventeen out of the 325 plated explants produced calli. The growth curves demonstrated that the growth rate of salt-tolerant calli on saline medium almost matched that of the control calli on normal medium. Some of the salt-tolerant calli were transferred to the normal regeneration medium or saline regeneration medium to induce plant regeneration. In the first case, buds and shoots were regenerated in the same way as those of control calli on normal regeneration medium. More than 1 000 regenerated shoots were obtained of which 83 regenerated shoots were cut and transferred to saline MS base medium. At first, all shoot growth was inhibited, but 40 days after the transfer, rapid-growing axillary shoots were observed on 16 of the original shoots but none on the control shoots on saline MS base medium. Moreover, green spots appeared on most calli 10 days after they were transferred to saline medium, however buds appeared only on 5 calli from the 30 transferred calli and at the end only 2 rapid-growing shoots were obtained from two calli. In total, 18 variant lines were obtained through. propagation of the salt-tolerant shoots on saline MS base medium. RAPD analysis was performed in 10 of the 18 salt-tolerant variant lines and DNA variation was detected in all the tested variant lines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xyloglucan-acting enzymes are believed to have effects on type I primary plant cell wall mechanical properties. In order to get a better understanding of these effects, a range of enzymes with different in vitro modes of action were tested against cell wall analogues (bio-composite materials based on Acetobacter xylinus cellulose and xyloglucan). Tomato pericarp xyloglucan endo transglycosylase (tXET) and nasturtium seed xyloglucanase (nXGase) were produced heterologously in Pichia pastoris. Their action against the cell wall analogues was compared with that of a commercial preparation of Trichoderma endo-glucanase (EndoGase). Both 'hydrolytic' enzymes (nXGase and EndoGase) were able to depolymerise not only the cross-link xyloglucan fraction but also the surface-bound fraction. Consequent major changes in cellulose fibril architecture were observed. In mechanical terms, removal of xyloglucan cross-links from composites resulted in increased stiffness (at high strain) and decreased visco-elasticity with similar extensibility. On the other hand, true transglycosylase activity (tXET) did not affect the cellulose/xyloglucan ratio. No change in composite stiffness or extensibility resulted, but a significant increase in creep behaviour was observed in the presence of active tXET. These results provide direct in vitro evidence for the involvement of cell wall xyloglucan-specific enzymes in mechanical changes underlying plant cell wall re-modelling and growth processes. Mechanical consequences of tXET action are shown to be complimentary to those of cucumber expansin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During seedling establishment, cotyledons of the rain forest tree Hymenaea courbaril mobilize storage cell wall xyloglucan to sustain growth. The polysaccharide is degraded and its products are transported to growing sink tissues. Auxin from the shoot controls the level of xyloglucan hydrolytic enzymes. It is not yet known how important the expression of these genes is for the control of storage xyloglucan degradation. In this work, partial cDNAs of the genes xyloglucan transglycosylase hydrolase (HcXTH1) and beta-galactosidase (HcBGAL1), both related to xyloglucan degradation, and two other genes related to sucrose metabolism [alkaline invertase (HcAlkIN1) and sucrose synthase (HcSUS1)], were isolated. The partial sequences were characterized by comparison with sequences available in the literature, and phylogenetic trees were assembled. Gene expression was evaluated at intervals of 6 h during 24 h in cotyledons, hypocotyl, roots, and leaves, using 45-d-old plantlets. HcXTH1 and HcBGAL1 were correlated to xyloglucan degradation and responded to auxin and light, being down-regulated when transport of auxin was prevented by N-1-naphthylphthalamic acid (NPA) and stimulated by constant light. Genes related to sucrose metabolism, HcAlkIN1 and HcSUS1, responded to inhibition of auxin transport in consonance with storage mobilization in the cotyledons. A model is proposed suggesting that auxin and light are involved in the control of the expression of genes related to storage xyloglucan mobilization in seedlings of H. courbaril. It is concluded that gene expression plays a role in the control of the intercommunication system of the source-sink relationship during seeding growth, favouring its establishment in the shaded environment of the rain forest understorey.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A utilização de extratos vegetais vem se tornando uma alternativa importante para a prevenção de doenças periodontais. Este trabalho objetivou desenvolver uma formulação de enxagüatório bucal, contendo, em associação, extratos hidroalcoólicos de Rosmarinus officinalis, Plantago major, Tabebuia impetiginosa, Achillea millefollium e Nasturtium officinale; avaliar sua composição farmacognóstica e sua atividade antibacteriana, como também da fórmula proposta. Foram realizados estudos de pré-formulação e análises farmacognósticas para as espécies vegetais. A atividade antibacteriana in vitro foi observada por meio dos métodos de difusão em disco de papel, por hole- plate e por template, frente a Staphylococcus aureus, Bacillus subtilis, Escherichia colik, Enterococcus faecalis e Pseudomonas aeruginosa. A concentração inibitória mínima (CIM) foi determinada por meio do método de macrodiluições sucessivas em caldo. Os resultados obtidos apresentaram-se de acordo com o histórico farmacognóstico das drogas estudadas. Todas as bactérias foram inibidas pelos extratos, observando-se que as espécies S. aureus e B. subtilis mostraram, aparentemente, maior sensibilidade. A CIM variou, em relação a sensibilidade de cada espécie bacteriana estudada, de 312,5 µL/mL a 1250 µL/mL para os extratos vegetais e de 625 µL/mL a 2500 µL/mL para o enxaguatório bucal. São necessários estudos complementares para a confirmação da eficácia deste produto e sua utilização na prevenção de doenças periodontais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Alimentos e Nutrição - FCFAR

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os enteroparasitas constituem-se em importante problema de saúde para a população humana no mundo inteiro. O consumo de hortaliças é uma das grandes vias de transmissão desses patógenos. Este trabalho buscou determinar a frequência e a diversidade de enteroparasitos veiculados por hortaliças comercializadas, na região metropolitana de Belém-PA, e sua relação com a sazonalidade climática da região. Foram usadas 252 amostras de três espécies de hortaliças, sendo 84 de alface (Lactuca sativa- variedade crespa), 84 de agrião (Nasturtium officinale) e 84 de coentro (Coriandrum sativum) adquiridas em feiras, hortas e em um supermercado, no período de dezembro de 2008 a novembro de 2009. Cada amostra foi lavada com 500 ml de PBS, permitindo a sedimentação espontânea e posterior centrifugação dos 30 ml finais do sedimento. O sedimento final foi analisado à microscopia óptica comum. Os níveis de contaminação das três espécies de hortaliças foram obtidos pelas médias mensais de estruturas enteroparasitárias identificadas em cada uma delas, e pelo número total de parasitos identificados, nas amostras de cada feira, horta e supermercado. Aos resultados obtidos, na análise microscópica das amostras, foi aplicado o Teste do Quiquadrado e o Teste Exato de Fisher, para determinar a existência ou não de diferenças estatisticamente significativas entre esses resultados. Foi usado o nível de significância ≤ 0,05. A análise microscópica revelou uma contaminação de 100% das amostras obtidas nas feiras, nas hortas e no supermercado incluídos na pesquisa, não havendo diferença estatística na frequência total de parasitos entre elas. O Strongyloides stercoralis foi o parasito mais prevalente, seguido pelo complexo Entamoeba histolytica/dispar e pelos ancilostomídeos, tanto nas amostras das hortas, quanto nas amostras das feiras e do supermercado. O agrião e a alface apresentaram maior índice de contaminação parasitária que o coentro. Foi caracterizada a influência sazonal sobre a intensidade de parasitos nas hortaliças pesquisadas, pois houve diferença estatística entre os resultados obtidos com uma prevalência maior de parasitos nas amostras de verão, em relação as amostras de inverno. Não houve diferença estatisticamente significativa entre as médias mensais de contaminação das hortaliças comercializadas nas feiras, nas hortas e no supermercado, indicando que, as condições de higiene sob as quais são comercializadas as hortaliças, apesar de importantes para manter suas características organolépticas, tem menor influência sobre os níveis de contaminação parasitária, que parece estar mais associada ao local e condições de cultivo desses vegetais. Esses dados permitem um bom grau de comparação para futuros trabalhos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydroponic cultivation of vegetables has increased markedly in recent years, however, little is known about its chemical composition, which is of extreme importance in view of changing food habits of a considerable fraction of the population seeking food quality. For this reason, cultivation of watercress, chicory, rocket and lettuce American (Lucy Brown) and smooth (cv. Regina) were grown in hydroponics, NFT system, aiming to evaluate the yield, nitrate content and chemical composition. The experiment was conducted in a greenhouse at the Universidade Federal de Santa Catarina, Florianopolis city in the Santa Catarina State (Brazil), from may to july 2004 under a completely randomized design with four replications. The spacing used was 25 x 25 cm for the crops of watercress, chicory and lettuce (cv. Lucy Brown and cv. Regina) and 5 x 5 cm to the rocket. The traits were: number of leaves, nitrate content and chemical composition of vegetables. The lettuce cv. Regina and chicory had higher number of leaves per plant. The watercress had lower water content and higher dry mass of shoots. The largest increase in fresh weight was obtained in chicory, lettuce, cv. Regina. Higher levels of lipids, protein, ash, carbohydrates, calories, fiber and nitrate were obtained from the watercress. The rocket had lower values for the variables fresh and dries the whole plant, shoot and root and leaf number per plant. All cultures showed good visual appearance, low calorie and nitrate levels suitable for human consumption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xyloglucan-acting enzymes are believed to have effects on type I primary plant cell wall mechanical properties. In order to get a better understanding of these effects, a range of enzymes with different in vitro modes of action were tested against cell wall analogues (bio-composite materials based on Acetobacter xylinus cellulose and xyloglucan). Tomato pericarp xyloglucan endo transglycosylase (tXET) and nasturtium seed xyloglucanase (nXGase) were produced heterologously in Pichia pastoris. Their action against the cell wall analogues was compared with that of a commercial preparation of Trichoderma endo-glucanase (EndoGase). Both 'hydrolytic' enzymes (nXGase and EndoGase) were able to depolymerise not only the cross-link xyloglucan fraction but also the surface-bound fraction. Consequent major changes in cellulose fibril architecture were observed. In mechanical terms, removal of xyloglucan cross-links from composites resulted in increased stiffness (at high strain) and decreased visco-elasticity with similar extensibility. On the other hand, true transglycosylase activity (tXET) did not affect the cellulose/xyloglucan ratio. No change in composite stiffness or extensibility resulted, but a significant increase in creep behaviour was observed in the presence of active tXET. These results provide direct in vitro evidence for the involvement of cell wall xyloglucan-specific enzymes in mechanical changes underlying plant cell wall re-modelling and growth processes. Mechanical consequences of tXET action are shown to be complimentary to those of cucumber expansin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Food irradiation is a treatment that involves subjecting in-bulk or packaged food to a controlled dose of ionizing radiation, with a clearly defined goal. It has been used for disinfestation and sanitization of food commodities and to retard postharvest ripening and senescence processes, being a sustainable alternative to chemical agents 1 . Doses up to 10 kGy are approved by several international authorities for not offering negative effects to food from a nutrition and toxicology point of view 2 . However, the adoption of this technology for food applications has been a slow process due to some misunderstandings by the consumer who often chooses non-irradiated foods. In this study, the effects of the ionizing radiation treatment on physical, chemical and bioactive properties of dried herbs and its suitability for preserving quality attributes of fresh vegetables during cold storage were evaluated. The studied herbs, perennial spotted rockrose (Tuberaria lignosa (Sweet) Samp.) and common mallow (Malva neglecta Wallr.) were freeze-dried and then irradiated up to 10 kGy in a Cobalt-60 chamber. The selected vegetables, watercress (Nasturtium officinale R. Br.) and buckler sorrel (Rumex induratus Boiss. Reut.) were rinsed in tap water, packaged in polyethylene bags, submitted to irradiation doses up to 6 kGy and then were stored at 4 C for a period of up to 12 days. Physical, chemical and bioactive parameters of irradiated and non-irradiated samples were evaluated using different methodologies the colour was measured with a colorimeter, individual chemical compounds were analyzed by chromatographic techniques, antioxidant properties were evaluated using in vitro assays based on different reaction mechanisms, and other quality analyses were performed following official methods of analysis. The irradiation treatment did not significantly affect the colour of the perennial spotted rockrose samples, or its phenolic composition and antioxidant activity 3 . Medium doses preserved the colour of common mallow and a low dose did not induce any adverse effect in the organic acids profile. The green colour of the irradiated vegetables was maintained during cold storage but the treatment had pros and cons in other quality attributes. The 2 kGy dose preserved free sugars and favoured polyunsaturated fatty acids (PUFA) while the 5 kGy dose favoured tocopherols and preserved the antioxidant properties in watercress samples. The 6 kGy dose was a suitable option for preserving PUFA and the ω-6 ω-3 fatty acids ratio in buckler sorrel samples. This comprehensive experimental work allowed selecting appropriate processing doses for the studied plant foods in order to preserve its quality attributes and edibility.