966 resultados para Nap break
Resumo:
The incidence of sleep-related crashes has been estimated to account for approximately 20% of all fatal and severe crashes. The use of sleepiness countermeasures by drivers is an important component to reduce the incidence rates of sleep-related crashes. Taking a brief nap and stopping for a rest break are two highly publicised countermeasures for driver sleepiness and are also believed by drivers to be the most effective countermeasures. Despite this belief, there is scarce evidence to support the utility of these countermeasures for reducing driver sleepiness levels. Therefore, determining the effectiveness of these countermeasures is an important road safety concern. The current study utilised a young adult sample (N = 20) to investigate the effectiveness of a nap and an active rest break. The countermeasures effects were evaluated by physiological, behavioural (hazard perception skill), and subjective measures previously found sensitive to sleepiness. Participants initially completed two hours of a simulated driving task followed by a 15 minute nap opportunity or a 15 minute active rest break that included 10 minutes of brisk walking. After the break, participants completed one final hour of the simulated driving task. A within-subjects design was used so that each participant completed both the nap and the active rest break conditions on separate occasions. The analyses revealed that only the nap break provided any meaningful reduction in physiological sleepiness, reduced subjective sleepiness levels, and maintained hazard perception performance. In contrast, the active rest break had no effect for reducing physiological sleepiness and resulted in a decrement in hazard perception performance (i.e., an increase of reaction time latencies), with a transient reduction in subjective sleepiness levels. A number of theoretical, empirical and practical issues were identified by the current study.
Resumo:
The purpose of this study was to compare the effects of two commonly utilised sleepiness countermeasures: a nap break and an active rest break. The effects of the countermeasures were evaluated by physiological (EEG), subjective, and driving performance measures. Participants completed two hours of simulated driving, followed by a 15 minute nap break or a 15 minute active rest break then completed the final hour of simulated driving. The nap break reduced EEG and subjective sleepiness. The active rest break did not reduce EEG sleepiness, with sleepiness levels eventually increasing, and resulted in an immediate reduction of subjective sleepiness. No difference was found between the two breaks for the driving performance measure. The immediate reduction of subjective sleepiness after the active rest break could leave drivers with erroneous perceptions of their sleepiness, particularly with increases of physiological sleepiness after the break.
Resumo:
Objectives The purpose for this study was to determine the relative benefit of nap and active rest breaks for reducing driver sleepiness. Methods Participants were 20 healthy young adults (20-25 years), including 8 males and 12 females. A counterbalanced within-subjects design was used such that each participant completed both conditions on separate occasions, a week apart. The effects of the countermeasures were evaluated by established physiological (EEG theta and alpha absolute power), subjective (Karolinska Sleepiness Scale), and driving performance measures (Hazard Perception Task). Participants woke at 5am, and undertook a simulated driving task for two hours; each participant then had either a 15-minute nap opportunity or a 15-minute active rest break that included 10 minutes of brisk walking, followed by another hour of simulated driving. Results The nap break reduced EEG theta and alpha absolute power and eventually reduced subjective sleepiness levels. In contrast, the active rest break did not reduce EEG theta and alpha absolute power levels with the power levels eventually increasing. An immediate reduction of subjective sleepiness was observed, with subjective sleepiness increasing during the final hour of simulated driving. No difference was found between the two breaks for hazard perception performance. Conclusions Only the nap break produced a significant reduction in physiological sleepiness. The immediate reductions of subjective sleepiness following the active rest break could leave drivers with erroneous perceptions of their sleepiness, particularly as physiological sleepiness continued to increase after the break.
Resumo:
Background: Sleepiness is a direct contributor to a substantial proportion of fatal and severe road cashes. A number of technological solutions designed to detect sleepiness have been developed, but self-awareness of increasing sleepiness remains a critical component in on-road strategies for mitigating this risk. In order to take appropriate action when sleepy, drivers’ perceptions of their level of sleepiness must be accurate. Aims: This study aimed to assess capacity to accurately identify sleepiness and self-regulate driving cessation during a validated driving simulator task. Participants: Participants comprised 26 young adult drivers (20-28 years). The drivers had open licenses but no other exclusion criteria where used. Methods: Participants woke at 5am, and took part in a laboratory-based hazard perception driving simulation, either at mid-morning or mid-afternoon. Established physiological measures (including EEG) and subjective measures (sleepiness ratings) previously found sensitive to changes in sleepiness levels were utilised. Participants were instructed to ‘drive’ until they believed that sleepiness had impaired their ability to drive safely. They were then offered a nap opportunity. Results: The mean duration of the drive before cessation was 39 minutes (±18 minutes). Almost all (23/26) of the participants then achieved sleep during the nap opportunity. These data suggest that the participants’ perceptions of sleepiness were specific. However, EEG data from a number of participants suggested very high levels of sleepiness prior to driving cessation, suggesting poor sensitivity. Conclusions: Participants reported high levels of sleepiness while driving after very moderate sleep restriction. They were able to identify increasing sleepiness during the test period, could decide to cease driving and in most cases were sufficiently sleepy to achieve sleep during the daytime session. However, the levels of sleepiness achieved prior to driving cessation suggest poor accuracy in self-perception and regulation. This presents practical issues for the implementation of fatigue and sleep-related strategies to improve driver safety.
Resumo:
Introduction: Sleepiness contributes to a substantial proportion of fatal and severe road crashes. Efforts to reduce the incidence of sleep-related crashes have largely focussed on driver education to promote self-regulation of driving behaviour. However, effective self-regulation requires accurate self-perception of sleepiness. The aim of this study was to assess capacity to accurately identify sleepiness, and self-regulate driving cessation, during a validated driving simulator task. Methods: Participants comprised 26 young adult drivers (20-28 years) who had open licenses. No other exclusion criteria where used. Participants were partially sleep deprived (05:00 wake up) and completed a laboratory-based hazard perception driving simulation, counterbalanced to either at mid-morning or mid-afternoon. Established physiological measures (i.e., EEG, EOG) and subjective measures (Karolinska Sleepiness Scale), previously found sensitive to changes in sleepiness levels, were utilised. Participants were instructed to ‘drive’ on the simulator until they believed that sleepiness had impaired their ability to drive safely. They were then offered a nap opportunity. Results: The mean duration of the drive before cessation was 36.1 minutes (±17.7 minutes). Subjective sleepiness increased significantly from the beginning (KSS=6.6±0.7) to the end (KSS=8.2±0.5) of the driving period. No significant differences were found for EEG spectral power measures of sleepiness (i.e., theta or alpha spectral power) from the start of the driving task to the point of cessation of driving. During the nap opportunity, 88% of the participants (23/26) were able to reach sleep onset with an average latency of 9.9 minutes (±7.5 minutes). The average nap duration was 15.1 minutes (±8.1 minutes). Sleep architecture during the nap was predominately comprised of Stages I and II (combined 92%). Discussion: Participants reported high levels of sleepiness during daytime driving after very moderate sleep restriction. They were able to report increasing sleepiness during the test period despite no observed change in standard physiological indices of sleepiness. This increased subjective sleepiness had behavioural validity as the participants had high ‘napability’ at the point of driving cessation, with most achieving some degree of subsequent sleep. This study suggests that the nature of a safety instruction (i.e. how to view sleepiness) can be a determinant of driver behaviour.
Resumo:
This paper presents Scatter Difference Nuisance Attribute Projection (SD-NAP) as an enhancement to NAP for SVM-based speaker verification. While standard NAP may inadvertently remove desirable speaker variability, SD-NAP explicitly de-emphasises this variability by incorporating a weighted version of the between-class scatter into the NAP optimisation criterion. Experimental evaluation of SD-NAP with a variety of SVM systems on the 2006 and 2008 NIST SRE corpora demonstrate that SD-NAP provides improved verification performance over standard NAP in most cases, particularly at the EER operating point.
Resumo:
Damage to genetic material represents a persistent and ubiquitous threat to genomic stability. Once DNA damage is detected, a multifaceted signaling network is activated that halts the cell cycle, initiates repair, and in some instances induces apoptotic cell death. In this article, we will review DNA damage surveillance networks, which maintain the stability of our genome, and discuss the efforts underway to identify chemotherapeutic compounds targeting the core components of DNA double-strand breaks (DSB) response pathway. The majority of tumor cells have defects in maintaining genomic stability owing to the loss of an appropriate response to DNA damage. New anticancer agents are exploiting this vulnerability of cancer cells to enhance therapeutic indexes, with limited normal tissue toxicity. Recently inhibitors of the checkpoint kinases Chk1 and Chk2 have been shown to sensitize tumor cells to DNA damaging agents. In addition, the treatment of BRCA1- or BRCA2-deficient tumor cells with poly(ADP-ribose) polymerase (PARP) inhibitors also leads to specific tumor killing. Due to the numerous roles of p53 in genomic stability and its defects in many human cancers, therapeutic agents that restore p53 activity in tumors are the subject of multiple clinical trials. In this article we highlight the proteins mentioned above and catalog several additional players in the DNA damage response pathway, including ATM, DNA-PK, and the MRN complex, which might be amenable to pharmacological interventions and lead to new approaches to sensitize cancer cells to radio- and chemotherapy. The challenge is how to identify those patients most receptive to these treatments.
Resumo:
This paper presents a comprehensive study to find the most efficient bitrate requirement to deliver mobile video that optimizes bandwidth, while at the same time maintains good user viewing experience. In the study, forty participants were asked to choose the lowest quality video that would still provide for a comfortable and long-term viewing experience, knowing that higher video quality is more expensive and bandwidth intensive. This paper proposes the lowest pleasing bitrates and corresponding encoding parameters for five different content types: cartoon, movie, music, news and sports. It also explores how the lowest pleasing quality is influenced by content type, image resolution, bitrate, and user gender, prior viewing experience, and preference. In addition, it analyzes the trajectory of users’ progression while selecting the lowest pleasing quality. The findings reveal that the lowest bitrate requirement for a pleasing viewing experience is much higher than that of the lowest acceptable quality. Users’ criteria for the lowest pleasing video quality are related to the video’s content features, as well as its usage purpose and the user’s personal preferences. These findings can provide video providers guidance on what quality they should offer to please mobile users.
Resumo:
The resection of DNA double-strand breaks (DSBs) to generate ssDNA tails is a pivotal event in the cellular response to these breaks. In the two-step model of resection, primarily elucidated in yeast, initial resection by Mre11-CtIP is followed by extensive resection by two distinct pathways involving Exo1 or BLM/WRN-Dna2. However, resection pathways and their exact contributions in humans in vivo are not as clearly worked out as in yeast. Here, we examined the contribution of Exo1 to DNA end resection in humans in vivo in response to ionizing radiation (IR) and its relationship with other resection pathways (Mre11-CtIP or BLM/WRN). We find that Exo1 plays a predominant role in resection in human cells along with an alternate pathway dependent on WRN. While Mre11 and CtIP stimulate resection in human cells, they are not absolutely required for this process and Exo1 can function in resection even in the absence of Mre11-CtIP. Interestingly, the recruitment of Exo1 to DNA breaks appears to be inhibited by the NHEJ protein Ku80, and the higher level of resection that occurs upon siRNA-mediated depletion of Ku80 is dependent on Exo1. In addition, Exo1 may be regulated by 53BP1 and Brca1, and the restoration of resection in BRCA1-deficient cells upon depletion of 53BP1 is dependent on Exo1. Finally, we find that Exo1-mediated resection facilitates a transition from ATM- to ATR-mediated cell cycle checkpoint signaling. Our results identify Exo1 as a key mediator of DNA end resection and DSB repair and damage signaling decisions in human cells.
Resumo:
Although there has been exponential growth in the number of studies of destination image appearing in the tourism literature, few have addressed the role of affective perceptions. This paper analyses the market positions held by a competitive set of destinations, through a comparison of cognitive, affective and conative perceptions. Cognitive perceptions were measured by trialling a factor analytic adaptation of importance-performance analysis. Affective perceptions were measured using an affective response grid. The alignment of the results from these techniques identified leadership positions held by two quite different destinations on two quite different dimensions of short break destination attractiveness.
Resumo:
Cenozoic extension in western Mexico has been divided into two episodes separated by the change from convergence to oblique divergence at the plate boundary. The Gulf Extensional Province is thought to have started once subduction ended at ~12.5 Ma whereas early extension is classified as Basin and Range. Mid-Miocene volcanism of the Comondú group has been considered as a subduction-related arc, whereas post ~12.5 Ma volcanism would be extension-related. Our new integration of the continental onshore and offshore geology of the south-east Gulf region, backed by tens of Ar-Ar and U-Pb ages and geochemical studies, document an early-mid Miocene rifting and extension-related bimodal to andesitic magmatism prior to subduction termination. Between ~21 and 11 Ma a system of NNW-SSE high-angle extensional faults rifted the western side of the Sierra Madre Occidental (SMO) ignimbrite plateau. In Nayarit, rhyolitic domes and some basalts were emplaced along this extensional belt at 18-17 Ma. These rocks show strong antecrystic inheritance but an absence of Mesozoic and older xenocrysts, suggesting a genesis in the mid-upper crust triggered by extension-induced basaltic influx. In Sinaloa, large grabens were floored by huge dome complexes at ~21-17 Ma and filled by continental sediments with interlayered basalts dated at 15 Ma. Mid-Miocene volcanism, including the largely volcaniclastic Comondú strata in Baja California, was thus emplaced in rift basins and appears associated to decompression melting rather than subduction. Along the coast, flat-lying basaltic lava flows dated at 11-10 Ma are exposed just above the present sea level. Here crustal thickness is 25-20 Km, almost half that in the core of the SMO, implying significant lithosphere stretching before ~11 Ma. This mafic pulse, with relatively high Ti but still clear Nb-Ta negative spikes, may be related to the detachment of the lower part of the subducted slab, allowing asthenosphere to flow into parts of the mantle previously fluxed by subduction fluids. Very uniform OIB-like lavas appear in late Pliocene and Pleistocene, only 18 m.y. after the onset of rifting and ~9 m.y. after the end of subduction. Our study shows that rifting began much earlier than Late Miocene and progressively overwhelmed subduction in generating magmatism.
Resumo:
Confusion exists as to the age of the Abor Volcanics of NE India. Some consider the unit to have been emplaced in the Early Permian, others the Early Eocene, a difference of ∼230 million years. The divergence in opinion is significant because fundamentally different models explaining the geotectonic evolution of India depend on the age designation of the unit. Paleomagnetic data reported here from several exposures in the type locality of the formation in the lower Siang Valley indicate that steep dipping primary magnetizations (mean = 72.7 ± 6.2°, equating to a paleo-latitude of 58.1°) are recorded in the formation. These are only consistent with the unit being of Permian age, possibly Artinskian based on a magnetostratigraphic argument. Plate tectonic models for this time consistently show the NE corner of the sub-continent >50°S; in the Early Eocene it was just north of the equator, which would have resulted in the unit recording shallow directions. The mean declination is counter-clockwise rotated by ∼94°, around half of which can be related to the motion of the Indian block; the remainder is likely due local Himalayan-age thrusting in the Eastern Syntaxis. Several workers have correlated the Abor Volcanics with broadly coeval mafic volcanic suites in Oman, NE Pakistan–NW India and southern Tibet–Nepal, which developed in response to the Cimmerian block peeling-off eastern Gondwana in the Early-Middle Permian, but we believe there are problems with this model. Instead, we suggest that the Abor basalts relate to India–Antarctica/India–Australia extension that was happening at about the same time. Such an explanation best accommodates the relevant stratigraphical and structural data (present-day position within the Himalayan thrust stack), as well as the plate tectonic model for Permian eastern Gondwana.
Resumo:
LIP emplacement is linked to the timing and evolution of supercontinental break-up. LIP-related break-up produces volcanic rifted margins, new and large (up to 108 km2) ocean basins, and new, smaller continents that undergo dispersal and potentially reassembly (e.g., India). However, not all continental LIPs lead to continental rupture. We analysed the <330 Ma continental LIP record(following final assembly of Pangea) to find relationships between LIP event attributes (e.g., igneous volume, extent, distance from pre-existing continental margin) and ocean basin attributes (e.g., length of new ocean basin/rifted margin) and how these varied during the progressive break up of Pangea. No correlation exists between LIP magnitude and size of the subsequent ocean basin or rifted margin. Our review suggests a three-phased break-up history of Pangea: 1) “Preconditioning” phase (∼330–200 Ma): LIP events (n=7) occurred largely around the supercontinental margin clustering today in Asia, with a low (<20%) rifting success rate. The Panjal Traps at ∼280 Ma may represent the first continental rupturing event of Pangea, resulting in continental ribboning along the Tethyan margin; 2) “Main Break-up” phase (∼200–100 Ma): numerous large LIP events(n=10) in the supercontinent interior, resulting in highly successful fragmentation (90%) and large, new ocean basins(e.g., Central/South Atlantic, Indian, >3000 km long); 3) “Waning” phase (∼100–0 Ma): Declining LIP magnitudes (n=6), greater proximity to continental margins (e.g., Madagascar, North Atlantic, Afro-Arabia, Sierra Madre) producing smaller ocean basins (<2600 km long). How Pangea broke up may thus have implications for earlier supercontinent reconstructions and LIP record.
Resumo:
Plasmas, the 4th state of matter, uniformly transform natural precursors with different chemical composition in solid, liquid, and gas states into the same functional vertical graphenes in a single-step process within a few minutes. Functional vertical graphenes show reliable biosensing properties, strong binding with proteins, and improved adhesion to substrates.
Resumo:
The repair of DNA double-strand breaks (DSBs) is a critical cellular mechanism that exists to ensure genomic stability. DNA DSBs are the most deleterious type of insult to a cell’s genetic material and can lead to genomic instability, apoptosis, or senescence. Incorrectly repaired DNA DSBs have the potential to produce chromosomal translocations and genomic instability, potentially leading to cancer. The prevalence of DNA DSBs in cancer due to unregulated growth and errors in repair opens up a potential therapeutic window in the treatment of cancers. The cellular response to DNA DSBs is comprised of two pathways to ensure DNA breaks are repaired: homologous recombination and non-homologous end joining. Identifying chemotherapeutic compounds targeting proteins involved in these DNA repair pathways has shown promise as a cancer therapy for patients, either as a monotherapy or in combination with genotoxic drugs. From the beginning, there have been a number of chemotherapeutic compounds that have yielded successful responses in the clinic, a number that have failed (CGK-733 and iniparib), and a number of promising targets for future studies identified. This review looks in detail at how the cell responds to these DNA DSBs and investigates the chemotherapeutic avenues that have been and are currently being explored to target this repair process.