3 resultados para Nanomotors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanomotors are nanoscale devices capable of converting energy into movement and forces. Among them, self-propelled nanomotors offer considerable promise for developing new and novel bioanalytical and biosensing strategies based on the direct isolation of target biomolecules or changes in their movement in the presence of target analytes. The mainachievements of this project consists on the development of receptor-functionalized nanomotors that offer direct and rapid target detection, isolation and transport from raw biological samples without preparatory and washing steps. For example, microtube engines functionalized with aptamer, antibody, lectin and enzymes receptors were used for the direct isolation of analytes of biomedical interest, including proteins and whole cells, among others. A target protein was also isolated from a complex sample by using an antigen-functionalized microengine navigating into the reservoirs of a lab-on-a-chip device. The new nanomotorbased target biomarkers detection strategy not only offers highly sensitive, rapid, simple and low cost alternative for the isolation and transport of target molecules, but also represents a new dimension of analytical information based on motion. The recognition events can be easily visualized by optical microscope (without any sophisticated analytical instrument) to reveal the target presence and concentration. The use of artificial nanomachines has shown not only to be useful for (bio)recognition and (bio)transport but also for detection of environmental contamination and remediation. In this context, micromotors modified with superhydrophobic layer demonstrated that effectively interacted, captured, transported and removed oil droplets from oil contaminated samples. Finally, a unique micromotor-based strategy for water-quality testing, that mimics live-fish water-quality testing, based on changes in the propulsion behavior of artificial biocatalytic microswimmers in the presence of aquatic pollutants was also developed. The attractive features of the new micromachine-based target isolation and signal transduction protocols developed in this project offer numerous potential applications in biomedical diagnostics, environmental monitoring, and forensic analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A primeira parte deste trabalho aborda a simulação computacional de dinâmica molecular clássica da interação de sistemas matriciais constituídos de nanofios paralelos de Au simuladas em função do tempo. Como resultados foram encontrados os tempos de colisões entre os fios da matriz. A segunda parte deste trabalho utiliza dinâmica molecular clássica para simular cinco gerações de dendrímeros PAMAM, cada qual interagindo individualmente com um nanotubo de carbono em função do tempo resultando num motor molecular. Além disso, foram calculados os espectros de absorção deste sistema e foi verificado que eles são nanomotores controlados pela luz. Para todos estes sistemas foram calculadas energias cinética, potencial, total, velocidade, propriedades termodinâmicas como variação de entropia molar, capacidade molar térmica e temperatura in situ. Estas grandezas nos forneceram valiosas informações sobre o comportamento destes sistemas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subject of the present work is the synthesis of novel nanoscale objects, designed for self-propulsion under external actuation. The synthesized objects present asymmetric hybrid particles, consisting of a magnetic core and polymer flagella and their hydrodynamic properties under the actuation by external magnetic fields are investigated. The single-domain ferromagnetic cobalt ferrite nanoparticles are prepared by thermal decomposition of a mixture of metalorganic complexes based on iron (III) cobalt (II) in non-polar solvents. Further modification of the particles includes the growth of the silver particle on the surface of the cobalt ferrite particle to form a dumbbell-shaped heterodimer. Different possible mechanisms of dumbbell formation are discussed. A polyelectrolyte tail with ability to adjust the persistence length of the polymer, and thus the stiffness of the tail, by variation of pH is attached to the particles. A polymer tail consisting of a polyacrylic acid chain is synthesized by hydrolysis of poly(tert-butyl acrylate) obtained by atom transfer radical polymerization (ATRP). A functional thiol end-group enables selective attachment of the tail to the silver part of the dumbbell, resulting in an asymmetric functionalization of the dumbbells. The calculations on the propulsion force and the sperm number for the resulting particles reveal a theoretical possibility for the propelled motion. Under the actuation of the particles with flagella by alternating magnetic field an increase in the diffusion coefficient compared to non-actuated or non-functionalized particles is observed. Further development of such systems for application as nanomotors or in drug delivery is promising.