946 resultados para Nanometric CeO
Resumo:
Cystalline ceria (CeO2) nanoparticles have been synthesized by a simple and fast microwave-assisted hydrothermal (MAH) under NaOH, KOH, and NH4OH mineralizers added to a cerium ammonium nitrate aqueous solution. The products were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transformed-IR and Raman spectroscopies. Rietveld refinement reveals a cubic structure with a space group Fm3m while infrared data showed few traces of nitrates. Field emission scanning microcopy (FEG-SEM) revealed a homogeneous size distribution of nanometric CeO2 nanoparticles. The MAH process in KOH and NaOH showed most effective to dehydrate the adsorbed water and decrease the hydrogen bonding effect leaving a weakly agglomerated powder of hydrated ceria. TEM micrographs of CeO2 synthesized under MAH conditions reveal particles well-dispersed and homogeneously distributed. The MAH enabled cerium oxide to be synthesized at 100 °C for 8 min. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The global economy experienced continuous growth from 2002 to 2007 until the U.S. subprime mortgage crisis caused instability in worldwide stock markets. Simultaneously, global CEO turnover continued to fall to 13.8 percent in 2007. In contrast, the CEO turnover rate in Australia increased to 18 percent in 2007. The purpose of this paper is to determine under what conditions a change in a CEO is associated with firm performance. Succinctly, does the firm’s decision to replace the CEO depend on the CEO’s human capital or firm performance? The empirical study of Australian listed firms (2005 – 2008) shows that firm performance is not a determinant of CEO turnover, rather a CEO with less valuable human capital is more likely to be replaced. The study also finds that merely changing the CEO is not associated firm performance. Rather, there is a positive association between firm performance and the successor’s general human capital for firms that replace the CEO. Specifically, it is the internal successor’s general human capital that is an important determinant of increasing firm performance. These results are important because they imply that CEO turnover is a result of a more active market for CEOs and contributes to explaining why firms retain CEOs despite poor firm performance.
Resumo:
Purpose: The purpose of this paper was to examine the relationship between CEO salaries and firm performance in the banking sector. Design/methodology/approach: The data relating to a six year period (2007 - 2012) was gathered from databases and the websites of the major banks in Australia and Germany. The data was subjected to Regression and Pearson Correlation Analysis to test if there was a positive correlation between total salary including incentive bonuses against the variables indicating the performance of the firm. Findings: The tests indicate a weak relationship between the CEO salary package and the key indicators of a firm's performance in Australian banks but a strong relationship in the German banks. Research limitations/implications: This study was limited in that it only covers the major banks in Australia and Germany and may therefore not be relevant to different countries with different economic climates. Practical implications: This study provides additional evidence to support the continued debate regarding the need to have greater accountability for CEO salary packages linked to actual performance measures of firms. Originality/value: This paper adds to the literature in so far as it compares two different Countries of the banking sector in a global market
Resumo:
Tribology of small inorganic nanoparticles in suspension in a liquid lubricant is often impaired because these particles agglomerate even when organic dispersants are used. In this paper we use lateral force microscopy to study the deformation mechanism and dissipation under traction of two extreme configurations (1) a large MoS2 particle (similar to 20 mu m width) of about 1 mu m height and (2) an agglomerate (similar to 20 mu m width), constituting 50 nm MoS2 crystallites, of about 1 mu m height. The agglomerate records a friction coefficient which is about 5-7 times that of monolithic particle. The paper examines the mechanisms of material removal for both the particles using continuum modeling and microscopy and infers that while the agglomerate response to traction can be accounted for by the bulk mechanical properties of the material, intralayer and interlayer basal planar slips determine the friction and wear of monolithic particles. The results provide a rationale for selection of layered particles, for suspension in liquid lubricants.
Resumo:
The time evolution of colloidal gold particles in the nanometric regime has been investigated by employing electron microscopy and electronic absorption spectroscopy. The particle size distributions are essentially Gaussian and show the same time dependence for both the mean and the standard deviation, enabling us to obtain a time-independent universal curve for the particle size. Temperature dependent studies show the growth to be an activated process with a barrier of about 18 kJ mol(-1). We present a phenomenological equation for the evolution of particle size and suggest that the growth process is stochastic.
Resumo:
The indium nitride (InN)-based nanometric-objects were grown directly on a c-sapphire substrate by using plasma-assisted molecular beam epitaxy (PAMBE) at different substrate temperatures. High resolution X-ray diffraction (HRXRD) reveals the InN (0002) reflection and full width at half maximum (FWHM) found to be decreased with increasing the growth temperature. The size, height and density of the grown nanometric-objects studied by scanning electron microscopy (SEM) has remarkable differences, evidencing the decisive role of substrate temperature. Photoluminescence (PL) studies revealed that the emission energy is shifted towards the higher side from the bulk value, i.e., a blue shift in the PL spectra was observed. The temperature dependence of the PL peak position shows an ``S-shaped'' emission energy shift, which can be attributed to the localization of carriers in the nanometric-objects.
Resumo:
A wet chemical route is developed for the preparation of Sr2CeO4 denoted the carbonate-gel composite technique. This involves the coprecipitation of strontium as fine particles of carbonates within hydrated gels of ceria (CeO2.xH(2)O, 40