5 resultados para Nanofils
Resumo:
Mesures effectuées dans le laboratoire de caractérisation optique des semi-conducteurs du Prof. Richard Leonelli du département de physique de l'université de Montréal. Les nanofils d'InGaN/GaN ont été fournis par le groupe du Prof. Zetian Mi du département de génie électrique et informatique de l'université McGill.
Resumo:
Une sonde électrostatique de Langmuir cylindrique a été utilisée pour caractériser une post-décharge d’un plasma d’ondes de surface de N2-O2 par la mesure de la densité des ions et électrons ainsi que la température des électrons dérivée de la fonction de distribution en énergie des électrons (EEDF). Une densité maximale des électrons au centre de la early afterglow de l’ordre de 1013 m-3 a été déterminée, alors que celle-ci a chuté à 1011 m-3 au début de la late afterglow. Tout au long du profil de la post-décharge, une densité des ions supérieure à celle des électrons indique la présence d’un milieu non macroscopiquement neutre. La post-décharge est caractérisée par une EEDF quasi maxwellienne avec une température des électrons de 0.5±0.1 eV, alors qu’elle grimpe à 1.1 ±0.2 eV dans la early afterglow due à la contribution des collisions vibrationnelles-électroniques (V-E) particulièrement importantes. L’ajout d’O2 dans la décharge principale entraîne un rehaussement des espèces chargées et de la température des électrons suivi d’une chute avec l’augmentation de la concentration d’O2. Le changement de la composition électrique de la post-décharge par la création de NO+ au détriment des ions N2+ est à l’origine du phénomène. Le recours à cette post-décharge de N2 pour la modification des propriétés d’émission optique de nanofils purs de GaN et avec des inclusions d’InGaN a été étudié par photoluminescence (PL). Bien que l’émission provenant des nanofils de GaN et de la matrice de GaN recouvrant les inclusions diminue suite à la création de sites de recombinaison non radiatifs, celle provenant des inclusions d’InGaN augmente fortement. Des mesures de PL par excitation indiquent que cet effet n’est pas attribuable à un changement de l’absorption de la surface de GaN. Ceci suggère un recuit dynamique induit par la désexcitation des métastables de N2 suite à leur collision à la surface des nanofils et la possibilité de passiver les défauts de surface tels que des lacunes d’azote par l’action d’atomes de N2 réactifs provenant de la post-décharge. L’incorporation d’O2 induit les mêmes effets en plus d’un décalage vers le rouge de la bande d’émission des inclusions, suggérant l’action des espèces d’O2 au sein même des nanostructures.
Resumo:
Este estudo transversal está focado na propriedade de luminescência persistente do aluminato de estrôncio co-dopado com cério (III), disprósio (III) e európio (II), SrAl2O4:Ce3+, Dy3+, Eu2+, em sistemas de sinalização de áreas de risco e emergências para pessoas com deficiências. Na área da ciência e engenharia dos materiais, foram desenvolvidos novos materiais com características nanométricas, nanotubos, nanoarames e nanobastões luminescentes de SrAl2O4:Ce3+, Dy3+, Eu2+ para aplicações na área da reabilitação e acessibilidade de pessoas com deficiências. Os nanotubos foram obtidos a partir de micro- e nano-partículas precursoras sintetizadas por reacção do estado-sólido e tratamento térmico de recozedura (1273-1473 K). Os nanoarames e nanobastões foram preparados por moagem, sonificação e recozedura (373 K). Novas nanocápsulas de aluminatos luminescentes dopados com cério (III) e encapsulados com TiO2 foram criadas de modo a obter-se materiais multifuncionais, designadamente com acção fotocatalítica antimicrobiana, antibacteriana e resistência à água. Tais aluminatos podem ser amplamente aplicados como superfícies higiénicas, auto-limpantes, em biomateriais, no domínio de medicamentos antibióticos, na formulação de vacinas, e com ênfase à aplicação em cerâmicas fotoluminescentes. As metodologias de obtenção de tais nanoestruturas de aluminato de estrôncio dopado com cério (III) e do seu encapsulamento, desenvolvidas no âmbito desta tese, são aplicáveis a diversos aluminatos dopados com outros iões lantanídeos (Ln consiste em La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Tm ou Lu) com a fórmula M(1-x-y)N2O4:Cex, Lny, onde M é Be, Mg, Ca, Sr ou Ba. Na área da oftalmologia, foi desenvolvido um equipamento médico para o diagnóstico de biofuncionalidade das células retinais fotoreceptoras, e como suporte à telemedicina oftalmológica. Este equipamento foi utilizado para realizar testes de visão cromática FM100HUE em fundo branco/preto para a personalização de materiais luminescentes. Os resultados demonstraram uma biofuncionalidade celular à visibilidade fotópica das cores em fundo preto superior no grupo de tratamento, composto por pessoas com retinopatia diabética (n=38), em comparação ao grupo de referência (n=38). Estes resultados sugerem a recomendação de materiais com fotoluminescência persistente (λem=485-555 nm), incluindo SrAl2O4:Ce3+, Dy3+, Eu2+, para o referido grupo de tratamento, em sinalização de emergência e em ambientes de baixa iluminação. Na área da arquitectura, foi proposta uma nova aplicação dos referidos nanomateriais luminescentes à base de SrAl2O4:Ce3+, Dy3+, Eu2+ em cerâmica de revestimento, tendo em vista a sua boa visibilidade e uso por pessoas com deficiências. Novos pavimentos, cerâmicos, fotoluminescentes, foram desenhados com propriedades multisensoriais (contraste táctil, sonoro e visual) e antimicrobianas, para pessoas portadoras de deficiências utilizarem, no escuro, com a prioridade de salvar vidas em emergências. Tais pisos, com relevos, podem ser combinados de modo a compor um sistema exclusivo de sinalização fotoluminescente multisensorial que possibilita a rápida evacuação mediante o uso de auxílios de mobilidade (e.g. bengala, cadeira de rodas, andadores, muletas). A solução integrada de tais inovações que potencializa a propriedade de luminescência persistente de SrAl2O4:Ce3+, Dy3+, Eu2+ de modo acessível para as pessoas com deficiências, pode contribuir para salvar vidas, no escuro, em emergências.
Resumo:
Ce travail a permis de démontrer que l’électrofilage, ainsi que l’électronébulisation, sont des méthodes faciles et efficaces de préparation de complexes entre des polymères et des petites molécules. En effet, la plupart des méthodes de préparation de complexes donnent des mélanges inhomogènes à cause de la cristallisation cinétiquement favorisée des petites molécules. Or, un mélange inhomogène peut être très difficile à caractériser. Dans ce travail, l’électrofilage a été utilisé pour la première fois avec succès pour obtenir des nanofils de complexe entre le poly(oxyde d’éthylène) (PEO) et le NaSCN (PEO-NaSCN) ainsi qu’entre le PEO et l’hydroquinone. L’électronébulisation a été utilisée pour obtenir du complexe entre la polycaprolactone (PCL) et l’urée. L’électrofilage n’était pas possible pour le système PCL-urée parce que la solubilité n’était pas suffisante pour atteindre la viscosité minimale requise pour l’électrofilage. L’électronébulisation peut donc complémenter l’électrofilage et rendre la technique applicable à encore plus de systèmes. Les systèmes ont été caractérisés par spectroscopie infrarouge (FT-IR), par diffraction de rayons X (XRD), par calorimétrie différentielle à balayage (DSC) et par microscopies optique et électronique à balayage.
Resumo:
Le marché des accumulateurs lithium-ion est en expansion. Cette croissance repose partiellement sur la multiplication des niches d’utilisation et l’amélioration constante de leurs performances. En raison de leur durabilité exceptionnelle, de leur faible coût, de leur haute densité de puissance et de leur fiabilité, les anodes basées sur les titanates de lithium, et plus particulièrement le spinelle Li4Ti5O12, présentent une alternative d’intérêt aux matériaux classiques d’anodes en carbone pour de multiples applications. Leur utilisation sous forme de nanomatériaux permet d’augmenter significativement la puissance disponible par unité de poids. Ces nanomatériaux ne sont typiquement pas contraints dans une direction particulière (nanofils, nanoplaquettes), car ces formes impliquent une tension de surface plus importante et requièrent donc généralement un mécanisme de synthèse dédié. Or, ces nanostructures permettent des réductions supplémentaires dans les dimensions caractéristiques de diffusion et de conduction, maximisant ainsi la puissance disponible, tout en affectant les propriétés habituellement intrinsèques des matériaux. Par ailleurs, les réacteurs continus reposant sur la technologie du plasma thermique inductif constituent une voie de synthèse démontrée afin de générer des volumes importants de matériaux nanostructurés. Il s’avère donc pertinent d’évaluer leur potentiel dans la production de titanates de lithium nanostructurés. La pureté des titanates de lithium est difficile à jauger. Les techniques de quantification habituelles reposent sur la fluorescence ou la diffraction en rayons X, auxquelles le lithium élémentaire se prête peu ou pas. Afin de quantifier les nombreuses phases (Li4Ti5O12, Li2Ti3O7, Li2TiO3, TiO2, Li2CO3) identifiées dans les échantillons produits par plasma, un raffinement de Rietveld fut développé et validé. La présence de γ-Li2TiO3 fut identifiée, et la calorimétrie en balayage différentiel fut explorée comme outil permettant d’identifier et de quantifier la présence de β-Li2TiO3. Différentes proportions entre les phases produites et différents types de morphologies furent observés en fonction des conditions d’opération du plasma. Ainsi, des conditions de trempe réductrice et d’ensemencement en Li4Ti5O12 nanométrique semblent favoriser l’émergence de nanomorphologies en nanofils (associés à Li4Ti5O12) et en nanoplaquette (associées à Li2TiO3). De plus, l’ensemencement et les recuits augmentèrent significativement le rendement en la phase spinelle Li4Ti5O12 recherchée. Les recuits sur les poudres synthétisées par plasma indiquèrent que la décomposition du Li2Ti3O7 produit du Li4Ti5O12, du Li2TiO3 et du TiO2 (rutile). Afin d’approfondir l’investigation de ces réactions de décomposition, les paramètres cristallins du Li2Ti3O7 et du γ-Li2TiO3 furent définis à haute température. Des mesures continues en diffraction en rayon X à haute température furent réalisées lors de recuits de poudres synthétisées par plasma, ainsi que sur des mélanges de TiO2 anatase et de Li2CO3. Celles-ci indiquent la production d’un intermédiaire Li2Ti3O7 à partir de l’anatase et du carbonate, sa décomposition en Li4Ti5O12 et TiO2 (rutile) sur toute la plage de température étudiée, et en Li2TiO3 et TiO2 (rutile) à des températures inférieures à 700°C.