974 resultados para Nano-size


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reports on the alloys formed from immiscible atoms when they are contained in a nano-sized system have initiated several research activities in the recent years. Bridging of the miscibility gap at nanoscale is significant as it has the potential to produce novel alloy materials with useful technological applications. Although the literature contains noticeable number of reports on the formation of solid solution between bulk immiscible atoms, several issues related to phase stability and microstructure remain unaddressed. This article discusses some of these issues using examples from the work done by the author's research group on isolated nanoparticles of bulk immiscible binary systems such as Ag-Ni, Ag-Fe and Ag-Co.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical model about size-dependent interface energy of metal/ceramic interfaces in nanoscale is developed by introducing both the chemical energy and the structure stain energy contributions. The dependence of interface energy on the interface thickness is determined by the melting enthalpy, the molar volume, and the shear modulus of two materials composing the interfaces, etc. The analytic prediction of the interface energy and the atomic scale simulation of the interface fracture strength are compared with each other for Ag/MgO and Ni/Al2O3 interfaces, the fracture strength of the interface with the lower chemical interface energy is found to be larger. The potential of Ag/MgO interface related to the interface energy is calculated, and the interface stress and the interface fracture strength are estimated further. The effect of the interface energy on the interface strength and the behind mechanism are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When the aggregation of C-60 is arranged in mono-dispersed state on the ITO substrate, the photoluminescence (PL) spectra are observed clearly. These emission peaks are attributed to recombination of self - trapped excitons, the zero-phonon exciton (R-0) and its phonon replicas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A "top-down" approach using a-beam lithography and a "bottom-up" one using self-assembly methods were used to fabricate ferroelelectric Pb(Zr,Ti)O-3, SrBi2Ta2O9 and BaTiO3 nanostructures with lateral sizes in the range of 30 nm to 100 nm. Switching of single sub-100 nm cells was achieved and piezoelectric hysteresis loops were recorded using a scanning force microscope working in piezoresponse mode. The piezoelectricity and its hysteresis acquired for 100 nm PZT cells demonstrate that a further decrease in lateral size under 100 nm appears to be possible and that the size effects are not fundamentally limiting on increase density of non-volatile ferroelectric memories in the Gbit range.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report the synthesis of various morphological micro to nano structured zinc oxide crystals via simple precipitation technique. The growth mechanisms of the zinc oxide nanostructures such as snowflake, rose, platelets, porous pyramid and rectangular shapes were studied in detail under various growth conditions. The precursor powders were prepared using several zinc counter ions such as chloride, nitrate and sulphate along with oxalic acid as a precipitating agent. The precursors were decomposed by heating in air resulting in the formation of different shapes of zinc oxide crystals. Variations in ZnO nanostructural shapes were possibly due to the counter ion effect. Sulphate counter ion led to unusual rose-shape morphology. Strong ultrasonic treatment on ZnO rose shows that it was formed by irregular arrangement of micro to nano size hexagonal zinc oxide platelets. The X-ray diffraction studies confirmed the wurzite structure of all zinc oxide samples synthesized using different zinc counter ions. Functional groups of the zinc oxalate precursor and zinc oxide were identified using micro Raman studies. The blue light emission spectra of the various morphologies were recorded using luminescence spectrometer. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, the effect of hybridizing micro-Ti with nano-SiC particulates on the microstructural and the mechanical behaviour of Mg-5.6Ti composite were investigated. Mg materials containing micron-sized Ti particulates hybridized with different amounts of nano-size SiC particulates were synthesized using the disintegrated melt deposition method followed by hot extrusion. The microstructural and mechanical behaviour of the developed Mg hybrid composites were studied in comparison with Mg-5.6Ti. Microstructural characterization revealed grain refinement attributed to the presence of uniformly distributed micro-Ti particles embedded with nano-SiC particulates. Electron back scattered diffraction (EBSD) analyses of Mg-(5.6Ti + 1.0SiC)(BM) hybrid composite showed relatively more localized recrystallized grains and lesser tensile twin fraction, when compared to Mg-5.6Ti. The evaluation of mechanical properties indicated that the best combination of strength and ductility was observed in the Mg-(5.6Ti + 1.0SiC)(BM) hybrid composites. The superior strength properties of the Mg-(5.6Ti + x-SiC)(BM) hybrid composites when compared to Mg-5.6Ti is attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles and the better interfacial bonding between the matrix and the reinforcement particles, achieved by nano-SiC addition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study elucidates the effects of nanoscale boron nitride particles addition on the microstructural and mechanical characteristics of monolithic magnesium. Novel light-weight Mg nanocomposites containing 0.3, 0.6 and 1.2vol% nano-size boron nitride particulates were synthesized using the disintegrated melt deposition method followed by hot extrusion. Microstructural characterization of developed Mg/x-boron nitride composites revealed significant grain refinement due to the uniform distribution of nano-boron nitride particulates. Texture analysis of selected Mg-1.2 boron nitride nanocomposite showed an increase in the intensity of fiber texture alongside enhanced localized recrystallization when compared to monolithic Mg. Mechanical properties evaluation under indentation, tension and compression loading indicated superior response of Mg/x-boron nitride composites in comparison to pure Mg. The uniform distribution of nanoscale boron nitride particles and the modified crystallographic texture achieved due to the nano-boron nitride addition attributes to the superior mechanical characteristics of Mg/boron nitride nanocomposites.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel energy- and time-saving solution combustion method has been developed to prepare Eu:Y2O3 nano-crystal line phosphor. This novel method employs anhydrous ethanol as solvent and fuel. The prepared nano-crystals after heat-treatment own narrow size distribution, well dispersibility and sinterability, confirmed by XRD, TEM and FTIR. The emission spectra of nano-Eu:Y2O3 Samples show clear nano-size related phenomena. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Doped ceria (CeO2) compounds are fluorite-type oxides that show oxide ionic conductivity higher than yttria-stabilized zirconia in oxidizing atmosphere. As a consequence of this, considerable interest has been shown in application of these materials for low (500 degrees-650 degrees C) temperature operation of solid oxide fuel cells (SOFCs). To improve the conductivity in dysprosium (Dy) doped CeO2, nano-size round shape particles were prepared using a coprecipitation method. The dense sintered bodies with small grain sizes (< 300 nm) were fabricated using a combined process of spark plasma sintering (SPS) and conventional sintering (CS). Dy-doped CeO2 sintered body with large grains (1.1 mu m) had large micro-domains. The conductivity in the sintered body was low (-3.2 S/cm at 500 degrees C). On the other hand, the conductivity in the specimens obtained by the combined process was considerably improved. The micro-domain size in the grain was minimized using the present process. It is concluded that the enhancement of conductivity in dense specimens produced by the combined process (SPS+CS) is attributable to the microstructural changes within the grains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article focuses on airborne engineered nanoparticles generated in a growing number of commercial and research facilities. Despite their presence in the air of many such facilities, there are currently no established and validated measurement methods to detect them, characterise their properties or quantify their concentrations. In relation to their possible health impacts, the key questions include: (i) Are the particles in the nano-size range are more toxic than larger particles of the same material? (ii) Does the surface chemistry of the lung alters the toxicity of inhaled nanoparticles? (iii) Do nano-fibers pose the same risk as asbestos? and (iv) Are the methods for assessing the health risk are appropriate? This article summarises the state of knowledge in relation to these issues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lanthanum oxide (La2O3) nanostructured films are synthesized on a p-type silicon wafer by ablation of La2O3 pellet due to interaction with hot dense argon plasmas in a modified dense plasma focus (DPF) device. The nanostructured films are investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) spectra. SEM study shows the formation of nano-films having nano-size structures with the average nanostructures size ~25, ~53, and ~45 nm for one, two, and three DPF shots, respectively. The nanostructures sizes and morphology of nano-films are consistent between the AFM and SEM analyses. XRD spectra confirms nano-sized La2O3 with an average grain size ~34, ~51, and ~42 nm for one, two, and three DPF shots, respectively. The electrical properties such as current-voltage and capacitance-voltage (C-V) characteristics of the Al-La2O3-Si metal-oxide- semiconductor (MOS) capacitor structure are measured. The current conduction mechanism of the MOS capacitors is also demonstrated. The C-V characteristics are further used to obtain the electrical parameters such as the dielectric constant, oxide thickness, flat-band capacitance, and flat-band voltage of the MOS capacitors. These measurements demonstrate significantly lower leakage currents without any commonly used annealing or doping, thereby revealing a significant improvement of the MOS nanoelectronic device performance due to the incorporation of the DPF-produced La2O3 nano-films.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon nanotubes, seamless cylinders made from carbon atoms, have outstanding characteristics: inherent nano-size, record-high Young’s modulus, high thermal stability and chemical inertness. They also have extraordinary electronic properties: in addition to extremely high conductance, they can be both metals and semiconductors without any external doping, just due to minute changes in the arrangements of atoms. As traditional silicon-based devices are reaching the level of miniaturisation where leakage currents become a problem, these properties make nanotubes a promising material for applications in nanoelectronics. However, several obstacles must be overcome for the development of nanotube-based nanoelectronics. One of them is the ability to modify locally the electronic structure of carbon nanotubes and create reliable interconnects between nanotubes and metal contacts which likely can be used for integration of the nanotubes in macroscopic electronic devices. In this thesis, the possibility of using ion and electron irradiation as a tool to introduce defects in nanotubes in a controllable manner and to achieve these goals is explored. Defects are known to modify the electronic properties of carbon nanotubes. Some defects are always present in pristine nanotubes, and naturally are introduced during irradiation. Obviously, their density can be controlled by irradiation dose. Since different types of defects have very different effects on the conductivity, knowledge of their abundance as induced by ion irradiation is central for controlling the conductivity. In this thesis, the response of single walled carbon nanotubes to ion irradiation is studied. It is shown that, indeed, by energy selective irradiation the conductance can be controlled. Not only the conductivity, but the local electronic structure of single walled carbon nanotubes can be changed by the defects. The presented studies show a variety of changes in the electronic structures of semiconducting single walled nanotubes, varying from individual new states in the band gap to changes in the band gap width. The extensive simulation results for various types of defect make it possible to unequivocally identify defects in single walled carbon nanotubes by combining electronic structure calculations and scanning tunneling spectroscopy, offering a reference data for a wide scientific community of researchers studying nanotubes with surface probe microscopy methods. In electronics applications, carbon nanotubes have to be interconnected to the macroscopic world via metal contacts. Interactions between the nanotubes and metal particles are also essential for nanotube synthesis, as single walled nanotubes are always grown from metal catalyst particles. In this thesis, both growth and creation of nanotube-metal nanoparticle interconnects driven by electron irradiation is studied. Surface curvature and the size of metal nanoparticles is demonstrated to determine the local carbon solubility in these particles. As for nanotube-metal contacts, previous experiments have proved the possibility to create junctions between carbon nanotubes and metal nanoparticles under irradiation in a transmission electron microscope. In this thesis, the microscopic mechanism of junction formation is studied by atomistic simulations carried out at various levels of sophistication. It is shown that structural defects created by the electron beam and efficient reconstruction of the nanotube atomic network, inherently related to the nanometer size and quasi-one dimensional structure of nanotubes, are the driving force for junction formation. Thus, the results of this thesis not only address practical aspects of irradiation-mediated engineering of nanosystems, but also contribute to our understanding of the behaviour of point defects in low-dimensional nanoscale materials.