828 resultados para Nano silica


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Resumo: Cement, as well as the remaining constituents of self-compacting mortars, must be carefully selected, in order to obtain an adequate composition with a granular mix as compact as possible and a good performance in the fresh state (self-compacting effect) and the hardened state (mechanical and durability-related behavior). Therefore in this work the possibility of incorporating nano particles in self-compacting mortars was studied. Nano materials are very reactive due mostly to their high specific surface and show a great potential to improve the properties of these mortars, both in mechanical and durability terms. In this work two nano materials were used, nano silica (nano SiO2) in colloidal state and nano titanium (nano TiO2) in amorphous state, in two types of self-compacting mortars (ratio binder:sand of 1:1 and 1:2). The self-compacting mortar mixes have the same water/cement ratio and 30% of replacement of cement with fly ashes. The influence of nano materials nano-SiO2 and nano-TiO2 on the fresh and hardened state properties of these self-compacting mortars was studied. The results show that the use of nano materials in repair and rehabilitation mortars has significant potential but still needs to be optimized. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of nano-silica, nano-alumina and binary combinations on surface hardness, resistance to abrasion and freeze-thaw cycle resistance in cement mortars was investigated. The Vickers hardness, the Los Angeles coefficient (LA) and the loss of mass in each of the freeze–thaw cycles to which the samples were subjected were measured. Four cement mortars CEM I 52.5R were prepared, one as control, and the other three with the additions: 5% nano-Si, 5% nano-Al and mix 2.5% n-Si and 2.5% n-Al. Mortars were tested at 7, 28 and 90 d of curing to determine compression strength, total porosity and pore distribution by mercury intrusion porosimetry (MIP) and the relationship between the CSH gel and Portlandite total by thermal gravimetric analysis (TGA). The capillary suction coefficient and an analysis by a scanning electron microscope (SEM) was made. There was a large increase in Vickers surface hardness for 5% n-Si mortar and a slight increase in resistance to abrasion. No significant difference was found between the mortars with nano-particles, whose LA was about 10.8, classifying them as materials with good resistance to abrasion. The microstructure shows that the addition of n-Si in mortars refines their porous matrix, increases the amount of hydrated gels and generates significant changes in both Portlandite and Ettringite. This produced a significant improvement in freeze–thaw cycle resistance. The effect of n-Al on mortar was null or negative with respect to freeze–thaw cycle resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de natureza científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cementing operations are conducted at different times of the well s life and they have high importance, because the functions are fundamental to keep good properties during a long life of the well, such as, maintain the mechanical stability of the well, to promote the isolation hydraulic and support the tubing. In some situations, the rocky zones have low fractures pressures and require the use of lightweight slurries to prevent the hydrostatic pressure in the formation is greater than the pressure of fracture. There are three ways to reduce the density of cement slurries: exterders water additives, microspheres and foamed slurries. The most used extender water additive is sodium bentonite, which is a clay with a good capacity of water absorption and expansion of its volume, the main disadvantage of this additive is the reduction of the strength. Currently, the use of nanoscale particles has received special attention, mainly because they get new functionalities. Following this trend, this paper aims to use a colloidal solution of nano-silica as an exterders water additives for use in oil wells. Slurries were designed with fixed 13lb/gal density and concentration of nano silica 0.1 gpc; 0.4 gpc; 0.7 and 1gpc, the influence of nano-silica was studied at these levels in isolation and combined varying concentrations of CaCl2,. Tests including rheology, stability, strength, thickening time, porosity and permeability. Besides the API tests, microstructural characterizations were performed after 28 days of the slurries, X-ray diffraction (XRD) and scanning electron microscopy (SEM)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oil wells cementing is a critical step during the phase of well drilling, because problems during the operation of slurry pumping and an incomplete filling of the annular space between the metal casing and the formation can cause the slurry loss. Therefore, the slurry adopted in primary cementing an oil well must be properly dosed so that these problems are avoided during its pumping. When you drill a well in a weak rock formation requires even more careful, because should be a limit of hydrostatic pressure exerted during cementation, that does not occur rock collapse. With the objective of performing the cementing of a well whose formation is weak or unconsolidated are employed lighter slurries. Thus, this study used slurries with sodium silicate and nano silica in concentrations of 0,1; 0,4; 0,7 e 1,0 gpc, in which the slurries with nano silica showed the rheological parameters higher concentrations of up to 0.7 gpc and for concentration of 1.0 the slurry with sodium silicate obtained the highest values, remaining above the limits for application in fields, mainly wells with low fracture gradient, because a significant increase in viscosity may result in an increase in pressure pumping in operations of secondary cementations. Furthermore, there was no decrease in strength with increasing concentration of additive. Then, it is possible use of these additives to formulate Lighter slurry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The materials engineering includes processes and products involving several areas of engineering, allowing them to prepare materials that fulfill the needs of various new products. In this case, this work aims to study a system composed of cement paste and geopolymers, which can contribute to solving an engineering problem that directly involves the exploitation of oil wells subject to loss of circulation. To correct it, has been already proposed the use of granular materials, fibers, reducing the drilling fluid or cement paste density and even surface and downhole mixed systems. In this work, we proposed the development of a slurry mixed system, the first was a cement-based slurry and the second a geopolymer-based slurry. The cement-based slurry was formulated with low density and extenders, 12.0 ppg (1.438 g/cm ³), showing great thixotropic characteristics. It was added nano silica at concentrations of 0.5, 1.0 and 1.5 gps (66.88, 133.76 and 200.64 L/m3) and CaCl2 at concentrations of 0.5, 1, 0 and 1.5%. The second system is a geopolymer-based paste formulated from molar ratios of 3.5 (nSiO2/nAl2O3), 0.27 (nK2O/nSiO2), 1.07 (nK2O/nAl2O3) and 13.99 (nH2O/nK2O). Finally, we performed a mixture of these two systems, for their application for correction of circulation lost. To characterize the raw materials, XRD, XRF, FTIR analysis and titration were performed. The both systems were characterized in tests based on API RP10B. Compressive strength tests were conducted after curing for 24 hours, 7 and 28 days at 58 °C on the cement-based system and the geopolymer-based system. From the mixtures have been performed mixability tests and micro structural characterizations (XRD, SEM and TG). The results showed that the nano silica, when combined with CaCl2 modified the rheological properties of the cement slurry and from the concentration of 1.5 gpc (200.64 L / m³) it was possible to obtain stable systems. The system mixture caused a change in the microstructure of the material by favoring the rate of geopolymer formation to hinder the C3S phase hydration, thus, the production of CSH phases and Portlandite were harmed. Through the mixability tests it can be concluded that the system, due to reduced setting time of the mixture, can be applied to plug lost circulation zones when mixed downhole

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Desde mediados de la década de los 80 se está investigando sobre el hormigón autocompactante. Cada día, su uso en el mundo de la construcción es más común debido a sus numerosas ventajas como su excelente fluidez ya que puede fluir bajo su propio peso y llenar encofrados con formas complicadas y muy armados sin necesidad de compactaciones internas o externas. Por otra parte, la búsqueda de materiales más resistentes y duraderos, ha dado lugar a la incorporación de adiciones en materiales a base de cemento. En las últimas dos décadas, los ensayos con los nanomateriales, ha experimentado un gran aumento. Los resultados hasta ahora obtenidos pueden asumir no sólo un aumento en la resistencia de estos materiales, pero un cambio es su funcionalidad. Estas nanopartículas, concretamente la nanosílice, no sólo mejoran sus propiedades mecánicas y especialmente sus propiedades durables, sino que pueden implicar un cambio sustancial en las condiciones de uso y en su ciclo de vida. Este trabajo tiene como principal objetivo el estudio de las propiedades mecánicas, características microestructurales y durables de un hormigón autocompactante cuando se le agrega como adición nanosílice, microsílice y mezcla binarias de ambas, como adición al cemento. Para ello se han realizado 10 mezclas de hormigón. Se utilizó como referencia un hormigón autocompactante obtenido con cemento, caliza, árido, aditivo modificador de viscosidad Se han fabricado tres hormigones con la misma dosificación pero con diferentes contenidos de nanosílice. 2,5%, 5% y 7,5% Tres dosificaciones con adición de microsílice 2,5%, 5% y 7,5% y las tres restantes con mezclas binarias de nanosílice y microsílice con respectivamente2,5%-2,5%, 5%-2,5% y 2,5%-5%, sobre el peso del cemento. El contenido de superplastificante se modificó para conseguir las características de autocompactabilidad. Para observar los efectos de las adiciones añadidas al hormigón, se realiza una extensa campaña experimental. En ella se evaluaron en primer lugar, las características de autocompactabilidad del material en estado fresco, mediante los ensayos prescritos en la Instrucción Española del hormigón estructural EHE 08. Las propiedades mecánicas fueron evaluadas con ensayos de resistencia a compresión, resistencia a tracción indirecta y módulo de elasticidad. Las características microestructurales fueron analizadas mediante porosimetría por intrusión de mercurio, el análisis termogravimétrico y la microscopía electrónica de barrido. Para el estudio de la capacidad durable de las mezclas se realizaron ensayos de resistividad eléctrica, migración de cloruros, difusión de cloruros, carbonatación acelerada, absorción capilar y resistencia al hielo-deshielo. Los resultados ponen de manifiesto que la acción de las adiciones genera mejoras en las propiedades resistentes del material. Así, la adición de nanosílice proporciona mayores resistencias a compresión que la microsílice, sin embargo las mezclas binarias con bajas proporciones de adición producen mayores resistencias. Por otra parte, se observó mediante la determinación de las relaciones de gel/portlandita, que las mezclas que contienen nanosílice tienen una mayor actividad puzolánica que las que contienen microsílice. En las mezclas binarias se obtuvo como resultado que mientras mayor es el contenido de nanosílice en la mezcla mayor es la actividad puzolánica. Unido a lo anteriormente expuesto, el estudio de la porosidad da como resultado que la adición de nanosílice genera un refinamiento del tamaño de los poros mientras que la adición de microsílice disminuye la cantidad de los mismos sin variar el tamaño de poro medio. Por su parte, en las micrografías, se visualizó la formación de cristales procedentes de la hidratación del cemento. En ellas, se pudo observar, que al adicionar nanosílice, la velocidad de hidratación aumenta al aumentar la formación de monosulfoaluminatos con escasa presencia de etringita. Mientras que en las mezclas con adición de microsílice se observan mayor cantidad de cristales de etringita, lo que confirma que la velocidad de hidratación en estos últimos fue menor. Mediante el estudio de los resultados de las pruebas de durabilidad, se observó que no hay diferencias significativas entre el coeficiente de migración de cloruros y el coeficiente de difusión de cloruros en hormigones con adición de nano o microsílice. Aunque este coeficiente es ligeramente menor en mezclas con adición de microsílice. Sin embargo, en las mezclas binarias de ambas adiciones se obtuvo valores de los coeficientes de difusión o migración de cloruros inferiores a los obtenidos en mezclas con una única adición. Esto se evidencia en los resultados de las pruebas de resistividad eléctrica, de difusión de cloruros y de migración de cloruros. Esto puede ser debido a la suma de los efectos que producen el nano y micro adiciones en la porosidad. El resultado mostró que nanosílice tiene un papel importante en la reducción de los poros y la microsílice disminuye el volumen total de ellos. Esto permite definir la vida útil de estos hormigones a valores muy superiores a los exigidos por la EHE-08, por lo que es posible reducir, de forma notable, el recubrimiento exigido en ambiente de alta agresividad asegurando un buen comportamiento en servicio. Por otra parte, la pérdida de masa debido a los ciclos de congelación-descongelación es significativamente menor en los hormigones que contienen nanosílice que los que contienen microsílice. Este resultado está de acuerdo con el ensayo de absorción capilar. De manera general, se puede concluir que son las mezclas binarias y más concretamente la mezcla con un 5% de nanosílice y 2,5% de microsílice la que presenta los mejores resultados tanto en su comportamiento resistente con en su comportamiento durable. Esto puede ser debido a que en estas mezclas la nanosílice se comporta como un núcleo de activación de las reacciones puzolánicas rodeado de partículas de mayor tamaño. Además, el extraordinario comportamiento durable puede deberse también a la continuidad en la curva granulométrica por la existencia de la microsílice, el filler calizo, el cemento, la arena y la gravilla con tamaños de partículas que garantice mezclas muy compactas que presentan elevadas prestaciones. Since the middle of the decade of the 80 is being investigated about self-consolidating concrete. Every day, its use in the world of construction is more common due to their numerous advantages as its excellent fluidity such that it can flow under its own weight and fill formworks with complicated shapes and congested reinforcement without need for internal or external compactions. Moreover, the search for more resistant and durable materials, has led to the incorporation of additions to cement-based materials. In the last two decades, trials with nanomaterials, has experienced a large increase. The results so far obtained can assume not only an increase in the resistance of these materials but a change is its functionality. These nano particles, particularly the nano silica, not only improve their mechanical properties and especially its durable properties, but that may imply a substantial change in the conditions of use and in their life cycle. This work has as its main objective the study of the mechanical properties, the microstructural characteristics and durability capacity in one self-compacting concrete, when added as addition to cement: nano silica, micro silica o binary mixtures of both. To this effect, 10 concrete mixes have been made. As reference one with a certain amount of cement, limestone filler, viscosity modifying additive and water/binder relation. Furthermore they were manufactured with the same dosage three mix with addition of 2.5%, 5% and 7.5% of nano silica by weight of cement. Other three with 2.5%, 5% and 7.5% of micro silica and the remaining three with binary mixtures of 2.5%-2.5%, 5%-2.5% and 2.5%-5% of silica nano-micro silica respectively, b weight of cement, varying only the amount of superplasticizer to obtain concrete with characteristics of self-compactability. To observe the effects of the additions added to the concrete, an extensive experimental campaign was performed. It assessed, first, the characteristics of self-compactability of fresh material through the tests prescribed in the Spanish Structural Instruction Concrete EHE 08. The mechanical properties were evaluated by compression strength tests, indirect tensile strength and modulus of elasticity. The microstructural properties were analyzed by mercury intrusion porosimetry, thermogravimetric analysis and scanning electron microscopy. To study the durability, were performed electrical resistivity tests, migration and diffusion of chlorides, accelerated carbonation, capillary suction and resistance to freeze-thaw cycles. The results show that the action of the additions generates improvements in the strength properties of the material. Specifically, the addition of nano silica provides greater resistance to compression that the mix with micro silica, however binary mixtures with low addition rates generate higher strengths. Moreover, it was observed by determining relationships gel/portlandite, that the pozzolanic activity in the mixtures with nano silica was higher than in the mixtures with micro silica. In binary mixtures it was found that the highest content of nano silica in the mix is the one with the highest pozzolanic activity. Together with the foregoing, the study of the porosity results in the mixture with addition of nano silica generates a refinement of pore size while adding micro silica decreases the amount thereof without changing the average pore size. On the other hand, in the micrographs, the formation of crystals of cement hydration was visualized. In them, it was observed that by adding nano silica, the speed of hydration increases with increasing formation monosulfoaluminatos with scarce presence of ettringite. While in mixtures with addition of micro silica, ettringite crystals are observed, confirming that the hydration speed was lower in these mixtures. By studying the results of durability testing, it observed that no significant differences between the coefficient of migration of chlorides and coefficient of diffusion of chlorides in concretes with addition of nano or micro silica. Although this coefficient is slightly lower in mixtures with addition of micro silica. However, in binary mixtures of both additions was obtained values of coefficients of difusion o migration of chlorides lower than those obtained in mixtures with one of the additions. This is evidenced by the results of the tests electrical resistivity, diffusion of chlorides and migration of chlorides. This may be due to the sum of the effects that produced the nano and micro additions in the porosity. The result showed that nano silica has an important role in the pores refining and the micro silica decreases the total volume of them. This allows defining the life of these concretes in values to far exceed those required by the EHE-08, making it possible to reduce, significantly, the coating required in highly aggressive environment and to guarantee good behavior in service. Moreover, the mass loss due to freeze-thaw cycles is significantly lower in concretes containing nano silica than those containing micro silica. This result agrees with the capillary absorption test. In general, one can conclude that the binary mixture and more specifically the mixture with 5% of nano silica and 2.5% silica fume is which presents the best results in its durable behavior. This may be because in these mixtures, the nano silica behaves as cores activation of pozzolanic reactions. In addition, the durable extraordinary behavior may also be due to the continuity of the grading curve due to existence of micro silica, limestone filler, cement, sand and gravel with particle sizes that guarantees very compact mixtures which have high performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cementing operations are conducted at different times of the well s life and they have high importance, because the functions are fundamental to keep good properties during a long life of the well, such as, maintain the mechanical stability of the well, to promote the isolation hydraulic and support the tubing. In some situations, the rocky zones have low fractures pressures and require the use of lightweight slurries to prevent the hydrostatic pressure in the formation is greater than the pressure of fracture. There are three ways to reduce the density of cement slurries: exterders water additives, microspheres and foamed slurries. The most used extender water additive is sodium bentonite, which is a clay with a good capacity of water absorption and expansion of its volume, the main disadvantage of this additive is the reduction of the strength. Currently, the use of nanoscale particles has received special attention, mainly because they get new functionalities. Following this trend, this paper aims to use a colloidal solution of nano-silica as an exterders water additives for use in oil wells. Slurries were designed with fixed 13lb/gal density and concentration of nano silica 0.1 gpc; 0.4 gpc; 0.7 and 1gpc, the influence of nano-silica was studied at these levels in isolation and combined varying concentrations of CaCl2,. Tests including rheology, stability, strength, thickening time, porosity and permeability. Besides the API tests, microstructural characterizations were performed after 28 days of the slurries, X-ray diffraction (XRD) and scanning electron microscopy (SEM)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oil wells cementing is a critical step during the phase of well drilling, because problems during the operation of slurry pumping and an incomplete filling of the annular space between the metal casing and the formation can cause the slurry loss. Therefore, the slurry adopted in primary cementing an oil well must be properly dosed so that these problems are avoided during its pumping. When you drill a well in a weak rock formation requires even more careful, because should be a limit of hydrostatic pressure exerted during cementation, that does not occur rock collapse. With the objective of performing the cementing of a well whose formation is weak or unconsolidated are employed lighter slurries. Thus, this study used slurries with sodium silicate and nano silica in concentrations of 0,1; 0,4; 0,7 e 1,0 gpc, in which the slurries with nano silica showed the rheological parameters higher concentrations of up to 0.7 gpc and for concentration of 1.0 the slurry with sodium silicate obtained the highest values, remaining above the limits for application in fields, mainly wells with low fracture gradient, because a significant increase in viscosity may result in an increase in pressure pumping in operations of secondary cementations. Furthermore, there was no decrease in strength with increasing concentration of additive. Then, it is possible use of these additives to formulate Lighter slurry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The materials engineering includes processes and products involving several areas of engineering, allowing them to prepare materials that fulfill the needs of various new products. In this case, this work aims to study a system composed of cement paste and geopolymers, which can contribute to solving an engineering problem that directly involves the exploitation of oil wells subject to loss of circulation. To correct it, has been already proposed the use of granular materials, fibers, reducing the drilling fluid or cement paste density and even surface and downhole mixed systems. In this work, we proposed the development of a slurry mixed system, the first was a cement-based slurry and the second a geopolymer-based slurry. The cement-based slurry was formulated with low density and extenders, 12.0 ppg (1.438 g/cm ³), showing great thixotropic characteristics. It was added nano silica at concentrations of 0.5, 1.0 and 1.5 gps (66.88, 133.76 and 200.64 L/m3) and CaCl2 at concentrations of 0.5, 1, 0 and 1.5%. The second system is a geopolymer-based paste formulated from molar ratios of 3.5 (nSiO2/nAl2O3), 0.27 (nK2O/nSiO2), 1.07 (nK2O/nAl2O3) and 13.99 (nH2O/nK2O). Finally, we performed a mixture of these two systems, for their application for correction of circulation lost. To characterize the raw materials, XRD, XRF, FTIR analysis and titration were performed. The both systems were characterized in tests based on API RP10B. Compressive strength tests were conducted after curing for 24 hours, 7 and 28 days at 58 °C on the cement-based system and the geopolymer-based system. From the mixtures have been performed mixability tests and micro structural characterizations (XRD, SEM and TG). The results showed that the nano silica, when combined with CaCl2 modified the rheological properties of the cement slurry and from the concentration of 1.5 gpc (200.64 L / m³) it was possible to obtain stable systems. The system mixture caused a change in the microstructure of the material by favoring the rate of geopolymer formation to hinder the C3S phase hydration, thus, the production of CSH phases and Portlandite were harmed. Through the mixability tests it can be concluded that the system, due to reduced setting time of the mixture, can be applied to plug lost circulation zones when mixed downhole

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Department of Applied Chemistry, Cochin University of Science and Technology

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A colloidal stable silica-encapsulated magnetic nano-composite of a controlled dimension is, for the first time, employed to carry beta-lactamase via chemical linkage on the silica overlayer: activity study reflects that this new type of immobilisation allows site (enzyme) isolation, accessibility as good as free enzyme and recovery & reusability upon application of magnetic separation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Templated sol-gel encapsulation of surfactant-stabilised micelles containing metal precursor(s) with ultra-thin porous silica coating allows solvent extraction of organic based stabiliser from the composites in colloidal state hence a new method of preparing supported alloy catalysts using the inorganic silica-stabilised nano-sized, homogenously mixed, silver - platinum (Ag-Pt) colloidal particles is reported.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Der Fokus dieser Doktorarbeit liegt auf der kontrollierten Benetzung von festen Oberflächen, die in vielen Bereichen, wie zum Beispiel in der Mikrofluidik, für Beschichtungen und in biologischen Studien von Zellen oder Bakterien, von großer Bedeutung ist.rnDer erste Teil dieser Arbeit widmet sich der Frage, wie Nanorauigkeit das Benetzungsverhalten, d.h. die Kontaktwinkel und die Pinningstärke, von hydrophoben und superhydrophoben Beschichtungen beeinflusst. Hierfür wird eine neue Methode entwickelt, um eine nanoraue Silika-Beschichtung über die Gasphase auf eine superhydrophobe Oberfläche, die aus rauen Polystyrol-Silika-Kern-Schale-Partikeln besteht, aufzubringen. Es wird gezeigt, dass die Topographie und Dichte der Nanorauigkeiten bestimmt, ob sich die Superhydrophobizität verringert oder erhöht, d.h. ob sich ein Flüssigkeitstropfen im Nano-Wenzel- oder Nano-Cassie-Zustand befindet. Das verstärkte Pinning im Nano-Wenzel-Zustand beruht auf dem Eindringen von Flüssigkeitsmolekülen in die Nanoporen der Beschichtung. Im Nano-Cassie-Zustand dagegen sitzt der Tropfen auf den Nanorauigkeiten, was das Pinning vermindert. Die experimentellen Ergebnisse werden mit molekulardynamischen Simulationen in Bezug gesetzt, die den Einfluss der Oberflächenbeschichtungsdichte und der Länge von fluorinierten Silanen auf die Hydrophobizität einer Oberfläche untersuchen. rnEs wurden bereits verschiedenste Techniken zur Herstellung von transparenten superhydrophoben, d.h. extrem flüssigkeitsabweisenden, Oberflächen entwickelt. Eine aktuelle Herausforderung liegt darin, Funktionalitäten einzuführen, ohne die superhydrophoben Eigenschaften einer Oberfläche zu verändern. Dies ist extrem anspruchsvoll, da funktionelle Gruppen in der Regel hydrophil sind. In dieser Arbeit wird eine innovative Methode zur Herstellung von transparenten superhydrophoben Oberflächen aus Janus-Mikrosäulen mit variierenden Dimensionen und Topographien entwickelt. Die Janus-Säulen haben hydrophobe Seitenwände und hydrophile Silika-Oberseiten, die anschließend selektiv und ohne Verlust der superhydrophoben Eigenschaften der Oberfläche funktionalisiert werden können. Diese selektive Oberflächenfunktionalisierung wird mittels konfokaler Mikroskopie und durch das chemische Anbinden von fluoreszenten Molekülen an die Säulenoberseiten sichtbar gemacht. Außerdem wird gezeigt, dass das Benetzungsverhalten durch Wechselwirkungen zwischen Flüssigkeit und Festkörper in der Nähe der Benetzungslinie bestimmt wird. Diese Beobachtung widerlegt das allgemein akzeptierte Modell von Cassie und Baxter und beinhaltet, dass hydrophile Flächen, die durch mechanischen Abrieb freigelegt werden, nicht zu einem Verlust der Superhydrophobizität führen müssen, wie allgemein angenommen.rnBenetzung kann auch durch eine räumliche Beschränkung von Flüssigkeiten kontrolliert werden, z.B. in mikrofluidischen Systemen. Hier wird eine modifizierte Stöber-Synthese verwendet, um künstliche und natürliche Faser-Template mit einer Silika-Schicht zu ummanteln. Nach der thermischen Zersetzung des organischen Templat-Materials entstehen wohldefinierte Silika-Kanäle und Kanalkreuzungen mit gleichmäßigen Durchmessern im Nano- und Mikrometerbereich. Auf Grund ihrer Transparenz, mechanischen Stabilität und des großen Länge-zu-Durchmesser-Verhältnisses sind die Kanäle sehr gut geeignet, um die Füllgeschwindigkeiten von Flüssigkeiten mit variierenden Oberflächenspannungen und Viskositäten zu untersuchen. Konfokale Mikroskopie ermöglicht es hierbei, die Füllgeschwindigkeiten über eine Länge von mehreren Millimetern, sowie direkt am Kanaleingang zu messen. Das späte Füllstadium kann sehr gut mit der Lucas-Washburn-Gleichung beschrieben werden. Die anfänglichen Füllgeschwindigkeiten sind jedoch niedriger als theoretisch vorhergesagt. Wohingegen die vorhergehenden Abschnitte dieser Arbeit sich mit der quasistatischen Benetzung beschäftigen, spielt hier die Dynamik der Benetzung eine wichtige Rolle. Tatsächlich lassen sich die beobachteten Abweichungen durch einen geschwindigkeitsabhängigen Fortschreitkontaktwinkel erklären und durch dynamische Benetzungstheorien modellieren. Somit löst diese Arbeit das seit langem diskutierte Problem der Abweichungen von der Lucas-Washburn-Gleichung bei kleinen Füllgeschwindigkeiten.