978 resultados para Named entity recognition
Resumo:
Actualmente existe una gran cantidad de empresas ofreciendo servicios para el análisis de contenido y minería de datos de las redes sociales con el objetivo de realizar análisis de opiniones y gestión de la reputación. Un alto porcentaje de pequeñas y medianas empresas (pymes) ofrecen soluciones específicas a un sector o dominio industrial. Sin embargo, la adquisición de la necesaria tecnología básica para ofrecer tales servicios es demasiado compleja y constituye un sobrecoste demasiado alto para sus limitados recursos. El objetivo del proyecto europeo OpeNER es la reutilización y desarrollo de componentes y recursos para el procesamiento lingüístico que proporcione la tecnología necesaria para su uso industrial y/o académico.
Resumo:
Browsing constitutes an important part of the user information searching process on the Web. In this paper, we present a browser plug-in called ESpotter, which recognizes entities of various types on Web pages and highlights them according to their types to assist user browsing. ESpotter uses a range of standard named entity recognition techniques. In addition, a key new feature of ESpotter is that it addresses the problem of multiple domains on the Web by adapting lexicon and patterns to these domains.
Resumo:
In questo lavoro si introducono i concetti di base di Natural Language Processing, soffermandosi su Information Extraction e analizzandone gli ambiti applicativi, le attività principali e la differenza rispetto a Information Retrieval. Successivamente si analizza il processo di Named Entity Recognition, focalizzando l’attenzione sulle principali problematiche di annotazione di testi e sui metodi per la valutazione della qualità dell’estrazione di entità. Infine si fornisce una panoramica della piattaforma software open-source di language processing GATE/ANNIE, descrivendone l’architettura e i suoi componenti principali, con approfondimenti sugli strumenti che GATE offre per l'approccio rule-based a Named Entity Recognition.
Resumo:
In this paper, we describe a voting mechanism for accurate named entity (NE) translation in English–Chinese question answering (QA). This mechanism involves translations from three different sources: machine translation,online encyclopaedia, and web documents. The translation with the highest number of votes is selected. We evaluated this approach using test collection, topics and assessment results from the NTCIR-8 evaluation forum. This mechanism achieved 95% accuracy in NEs translation and 0.3756 MAP in English–Chinese cross-lingual information retrieval of QA.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
This is a Named Entity Based Question Answering System for Malayalam Language. Although a vast amount of information is available today in digital form, no effective information access mechanism exists to provide humans with convenient information access. Information Retrieval and Question Answering systems are the two mechanisms available now for information access. Information systems typically return a long list of documents in response to a user’s query which are to be skimmed by the user to determine whether they contain an answer. But a Question Answering System allows the user to state his/her information need as a natural language question and receives most appropriate answer in a word or a sentence or a paragraph. This system is based on Named Entity Tagging and Question Classification. Document tagging extracts useful information from the documents which will be used in finding the answer to the question. Question Classification extracts useful information from the question to determine the type of the question and the way in which the question is to be answered. Various Machine Learning methods are used to tag the documents. Rule-Based Approach is used for Question Classification. Malayalam belongs to the Dravidian family of languages and is one of the four major languages of this family. It is one of the 22 Scheduled Languages of India with official language status in the state of Kerala. It is spoken by 40 million people. Malayalam is a morphologically rich agglutinative language and relatively of free word order. Also Malayalam has a productive morphology that allows the creation of complex words which are often highly ambiguous. Document tagging tools such as Parts-of-Speech Tagger, Phrase Chunker, Named Entity Tagger, and Compound Word Splitter are developed as a part of this research work. No such tools were available for Malayalam language. Finite State Transducer, High Order Conditional Random Field, Artificial Immunity System Principles, and Support Vector Machines are the techniques used for the design of these document preprocessing tools. This research work describes how the Named Entity is used to represent the documents. Single sentence questions are used to test the system. Overall Precision and Recall obtained are 88.5% and 85.9% respectively. This work can be extended in several directions. The coverage of non-factoid questions can be increased and also it can be extended to include open domain applications. Reference Resolution and Word Sense Disambiguation techniques are suggested as the future enhancements
Resumo:
One of the ultimate aims of Natural Language Processing is to automate the analysis of the meaning of text. A fundamental step in that direction consists in enabling effective ways to automatically link textual references to their referents, that is, real world objects. The work presented in this paper addresses the problem of attributing a sense to proper names in a given text, i.e., automatically associating words representing Named Entities with their referents. The method for Named Entity Disambiguation proposed here is based on the concept of semantic relatedness, which in this work is obtained via a graph-based model over Wikipedia. We show that, without building the traditional bag of words representation of the text, but instead only considering named entities within the text, the proposed method achieves results competitive with the state-of-the-art on two different datasets.
Resumo:
This paper reports on the 2nd ShARe/CLEFeHealth evaluation lab which continues our evaluation resource building activities for the medical domain. In this lab we focus on patients' information needs as opposed to the more common campaign focus of the specialised information needs of physicians and other healthcare workers. The usage scenario of the lab is to ease patients and next-of-kins' ease in understanding eHealth information, in particular clinical reports. The 1st ShARe/CLEFeHealth evaluation lab was held in 2013. This lab consisted of three tasks. Task 1 focused on named entity recognition and normalization of disorders; Task 2 on normalization of acronyms/abbreviations; and Task 3 on information retrieval to address questions patients may have when reading clinical reports. This year's lab introduces a new challenge in Task 1 on visual-interactive search and exploration of eHealth data. Its aim is to help patients (or their next-of-kin) in readability issues related to their hospital discharge documents and related information search on the Internet. Task 2 then continues the information extraction work of the 2013 lab, specifically focusing on disorder attribute identification and normalization from clinical text. Finally, this year's Task 3 further extends the 2013 information retrieval task, by cleaning the 2013 document collection and introducing a new query generation method and multilingual queries. De-identified clinical reports used by the three tasks were from US intensive care and originated from the MIMIC II database. Other text documents for Tasks 1 and 3 were from the Internet and originated from the Khresmoi project. Task 2 annotations originated from the ShARe annotations. For Tasks 1 and 3, new annotations, queries, and relevance assessments were created. 50, 79, and 91 people registered their interest in Tasks 1, 2, and 3, respectively. 24 unique teams participated with 1, 10, and 14 teams in Tasks 1, 2 and 3, respectively. The teams were from Africa, Asia, Canada, Europe, and North America. The Task 1 submission, reviewed by 5 expert peers, related to the task evaluation category of Effective use of interaction and targeted the needs of both expert and novice users. The best system had an Accuracy of 0.868 in Task 2a, an F1-score of 0.576 in Task 2b, and Precision at 10 (P@10) of 0.756 in Task 3. The results demonstrate the substantial community interest and capabilities of these systems in making clinical reports easier to understand for patients. The organisers have made data and tools available for future research and development.
Resumo:
本文针对难度最大的两类命名实体(地名和机构名)在条件随机场框架下首次引入了小规模的常用尾字特征.实验表明,该特征与词类特征具有一定的互补性,联合使用可以以较小的训练代价显著提高专有名词的识别性能,特别是机构名的识别精度.该系统在我国863简体命名实体识别评测语料上专名(人名、地名和机构名)总体F1值达踞.76%,超过当年最佳系统8.63个百分点.在SIGHAN 2006命名实体识别语料上的结果也居于前列.
Resumo:
近年来条件随机场(CRF)模型在自然语言处理中的应用越来越广泛。标准的线性链(Linear-chain)模型一般采用L—BFGS参数估计方法,收敛速度慢。本文在分析模型复杂度的基础上提出了一种改进的快速CRF算法。该算法通过引入小规模单字特征降低特征的规模,并通过在推理过程中引入任务相关的人工知识压缩Viterbi和Baum-Welch格搜索空间,提高了训练的速度。在中文863命名实体识别评测语料和SIGHAN06语料集上进行的实验表明,该算法在不影响中文命名实体识别精度的同时,有效地降低了模型的训练代价。
Resumo:
随着互联网和电子化办公的发展,出现了大量的文本资源。信息抽取技术可以帮助人们快速获取大规模文本中的有用信息。命名体识别与关系抽取是信息抽取的两个基本任务。本文在调研当前命名体识别和实体关系抽取中采用的主要方法的基础上,分别给出了解决方案。论文开展的主要工作有:(1)从模型选择和特征选择两个方面总结了命名体识别及实体关系抽取的国内外研究现状,重点介绍用于命名体识别的统计学习方法以及用于实体关系抽取的基于核的方法。(2)针对当前命名体识别中命名体片段边界的确定问题,研究了如何将 Semi-Markov CRFs 模型应用于中文命名体识别。这种模型只要求段间遵循马尔科夫规则,而段内的文本之间则可以被灵活的赋予各种规则。将这种模型用于中文命名体识别任务时,我们可以更有效更自由的设计出各种有利于识别出命名体片段边界的特征。实验表明,加入段相关的特征后,命名体识别的性能提高了 4-5 个百分点。(3)实体关系抽取的任务是判别两个实体之间的语义关系。之前的研究已经表明,待判别关系的两个实体间的语法树结构对于确定二者的关系类别是非常有用的,而相对成熟的基于平面特征的关系抽取方法在充分提取语法树结构特征方面的能力有限,因此,本文研究了基于核的中文实体关系抽取方法。针对中文特点,我们探讨了卷积(Convolution)核中使用不同的语法树对中文实体关系抽取性能的影响,构造了几种基于卷积核的复合核,改进了最短路依赖核。因为核方法开始被用于英文关系抽取时,F1 值也只有40%左右,而我们只使用作用在语法树上的卷积核时,中文关系抽取的F1 值达到了35%,可见核方法对中文关系抽取也是有效的。
Resumo:
Paper presented at the Cloud Forward Conference 2015, October 6th-8th, Pisa
Resumo:
The electronic storage of medical patient data is becoming a daily experience in most of the practices and hospitals worldwide. However, much of the data available is in free-form text, a convenient way of expressing concepts and events, but especially challenging if one wants to perform automatic searches, summarization or statistical analysis. Information Extraction can relieve some of these problems by offering a semantically informed interpretation and abstraction of the texts. MedInX, the Medical Information eXtraction system presented in this document, is the first information extraction system developed to process textual clinical discharge records written in Portuguese. The main goal of the system is to improve access to the information locked up in unstructured text, and, consequently, the efficiency of the health care process, by allowing faster and reliable access to quality information on health, for both patient and health professionals. MedInX components are based on Natural Language Processing principles, and provide several mechanisms to read, process and utilize external resources, such as terminologies and ontologies, in the process of automatic mapping of free text reports onto a structured representation. However, the flexible and scalable architecture of the system, also allowed its application to the task of Named Entity Recognition on a shared evaluation contest focused on Portuguese general domain free-form texts. The evaluation of the system on a set of authentic hospital discharge letters indicates that the system performs with 95% F-measure, on the task of entity recognition, and 95% precision on the task of relation extraction. Example applications, demonstrating the use of MedInX capabilities in real applications in the hospital setting, are also presented in this document. These applications were designed to answer common clinical problems related with the automatic coding of diagnoses and other health-related conditions described in the documents, according to the international classification systems ICD-9-CM and ICF. The automatic review of the content and completeness of the documents is an example of another developed application, denominated MedInX Clinical Audit system.