949 resultados para Nadph-flavodoxin Reductase
Resumo:
We investigated roles of different forms of cytochrome P450 (P450 or CYP) in the metabolic activation of heterocyclic amines (HCAs) and other procarcinogens to genotoxic metabolite(s) in the newly developed umu tester strains Salmonella typhimurium (S. typhimurium) OY1002/1A1, OY1002/1A2, OY1002/1B1, OY1002/2C9, OY1002/2D6, OY1002/2E1 and OY 1002/3A4. which express respective human P450 enzymes and NADPH-cytochrome P350 reductase (reductase) and bacterial O-acetyltransferase (O-AT). These strains were established by introducing two plasmids into S. typhimurium TA 1535, one carrying both P450 and the reductase cDNA in a bicistronic construct under control of an IPTG-inducible double me promoter and the other, pOA 102, carrying O-AT and umuClacZ fusion genes. Expression levels of CYP were found to range between 35 to 550 nmol/l cell culture in the strains tested. O-AT activities in different strains ranged from 52 to 135 nmol isoniazid acetylated/min/mg protein. All HCAs tested, and 2-aminoanthracene and 2-aminofluorene exhibited high genotoxicity in the OY1002/1A2 strain, and genotoxicity of 2-amino-3-methylimidazo [4,5-f]quinoline was detected in both the OY1002/1A1 and OY1002/1A2 strains. 1-Amino-1,4-dimethyl-5H-pyrido[4.3-b]-indole and 3-amino-1-methyl-5H-pyrido[4,3-b]-indole were activated in the OY1002/1A1, OY1002/1B1, OY1002/1A2, and OY1002/3A4 strains. Aflatoxin B-1 exhibited genotoxicity in the OY1002/1A2, OY1002/1A1, and OY1002/3A4 strains. beta -Naphthylamine and benzo[a]pyrene did not exhibit genotoxicity in any of the strains. These results suggest that CYP1A2 is the major cytochrom P450 enzyme involved in bioactivation of HCAs. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Modifications at the N-terminus of the rabbit CYP4B1 gene resulted in expression levels in Escherichia coli of up to 660 nmol/L. Solubilization of the enzyme from bacterial membranes led to substantial conversion to cytochrome P420 unless alpha-naphthoflavone was added as a stabilizing ligand. Mass spectrometry analysis and Edman sequencing of purified enzyme preparations revealed differential N-terminal post-translational processing of the various constructs expressed. Notably, bacterial expression of CYP4B1 produced a holoenzyme with >98.5% of its heme prosthetic group covalently linked to the protein backbone. The near fully covalently linked hernoproteins exhibited similar rates and regioselectivities of lauric acid hydroxylation to that observed previously for the partially heme processed enzyme expressed in insect cells. These studies shed new light on the consequences of covalent heme processing in CYP4B1 and provide a facile system for future mechanistic and structural studies with the enzyme. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.
Resumo:
The cytochrome P450 enzyme catalysis requires two electrons transferred from NADPH-cytochrome P450 reductase (reductase) to P450. Electrostatic charge-pairing has been proposed to be one of the major forces in the interaction between P450 and reductase. In order to obtain further insight into the molecular basis for the protein interaction, I used two methods, chemical modification and specific anti-peptide antibodies, to study the involvement and importance of charged amino acid residues. Acetylation of lysine residues of P450c and P450b by acetic anhydride dramatically inhibited the reductase-supported P450c-dependent ethoxycoumarin hydroxylation activity, but P450 activity supported by cumene hydroperoxide is relatively unchanged. The modification of lysine residues of P450c and P450b did not grossly disturb the protein conformation as revealed by several spectral studies. This differential effect of lysine modification on the P450 activity in the system reconstituted with reductase versus the system supported by cumene hydroperoxide suggested an important role for P450 lysine residues in the interaction with reductase. Using $\rm\sp{14}C$-acetic anhydride, P450 lysine residues were labelled and further identified on P450c and P450b. Those lysine residues are at position 97, 271, 279, and 407 for P450c, and 251, 384, 422, 433, and 473 for P450b. Alignment of those identified lysine residues on P450c and P450b with amino acid residues identified in other studies indicated those residues reside in three major sequence areas. Modification of arginine residues of P450b by phenylglyoxal and 2, 3-butanedione have no significant effect on P450 activity either supported by NADPH and reductase or supported by cumene hydroperoxide. Further studies using $\rm\sp{14}C$-phenylglyoxal reveals that no incorporation of phenylglyoxal into P450b was found. These results demonstrated a predominant role of lysine residues of P450 in the electrostatic interaction with reductase. To understand the protein binding sites on each of P450 and reductase, I generated three anti-peptide antibodies against regions on reductase and five anti-peptide antibodies against five putative reductase binding sites on P450c. These anti-peptide antibodies were affinity purified and characterized on ELISA and by Western blot analysis. Inhibition experiments using these antibodies demonstrated that regions 109-120 and 204-220 of reductase are probably the two major binding sites for P450. The association of reductase with cytochromes P450 and cytochrome c may rely on different mechanisms. The data from experiments using anti-peptide (P450c) antibodies supports the important role of P450c lysine residues 271/279 and 458/460 in the interaction with reductase. ^
Resumo:
NADPH-cytochrome P450 reductase (CPR; NADPH:ferrihemoprotein reductase, EC 1.6.2.4) catalyzes the transfer of electrons to all known microsomal cytochromes P450. CPR is unique in that it is one of only two mammalian enzymes known to contain both flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), the other being the various isoforms of nitric oxide synthase. Similarities in amino acid sequence and in functional domain arrangement with other key flavoproteins, including nitric oxide synthase, make CPR an excellent prototype for studies of interactions between two flavin cofactors. We have obtained diffraction-quality crystals of rat liver CPR, expressed in Escherichia coli and solubilized by limited proteolysis with trypsin. The crystals were grown in Hepes buffer (pH 7.0), containing polyethylene glycol 4500 and NaCl. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit cell dimensions a = 103.3 A, b = 116.1 A, and c = 120.4 A. If we assume that there are two molecules of the 72-kDa CPR polypeptide per asymmetric unit, the calculated value of Vm is 2.54 A3/Da.
Resumo:
Cytochromes P450 are members of a superfamily of hemoproteins involved in the oxidative metabolism of various physiologic and xenobiotic compounds in eukaryotes and prokaryotes. Studies on bacterial P450s, particularly those involved in monoterpene oxidation, have provided an integral contribution to our understanding of these proteins, away from the problems encountered with eukaryotic forms. We report here a novel cytochrome P450 (P450(cin), CYP176A1) purified from a strain of Citrobacter braakii that is capable of using cineole 1 as its sole source of carbon and energy. This enzyme has been purified to homogeneity and the amino acid sequences of three tryptic peptides determined. By using this information, a PCR-based cloning strategy was developed that allowed the isolation of a 4-kb DNA fragment containing the cytochrome P450(cin) gene (cinA). Sequencing revealed three open reading frames that were identified on the basis of sequence homology as a cytochrome P450, an NADPH-dependent flavodoxin/ferrodoxin reductase, and a flavodoxin. This arrangement suggests that P450(cin) may be the first isolated P450 to use a flavodoxin as its natural redox partner. Sequencing also identified the unprecedented substitution of a highly conserved, catalytically, important active site threonine with an asparagine residue. The P450 gene was subcloned and heterologously expressed in Escherichia coli at similar to2000 nmol/liter of original culture, and purification was achieved by standard protocols. Postulating the native E. coli flavodoxin/flavodoxin reductase system might mimic the natural redox partners of P450,in, it was expressed in E. coli in the presence of cineole 1. A product was formed in vivo that was tentatively identified by gas chromatography-mass spectrometry as 2-hydroxycineole 2. Examination of P450(cin) by UV-visible spectroscopy revealed typical spectra characteristic of P450s, a high affinity for cineole 1 (K-D = 0.7 mum), and a large spin state change of the heme iron associated with binding of cineole 1. These facts support the hypothesis that cineole 1 is the natural substrate for this enzyme and that P450(cin) catalyzes the initial monooxygenation of cineole 1 biodegradation. This constitutes the first characterization of an enzyme involved in this pathway.
Resumo:
Le CS fait partie de la famille des SYSADOA (SYmptomatic Slow Acting Drugs for OsteoArthritis) et est utilisé par les patients avec de l’ostéoarthrose de façon chronique pour ses propriétés anti-inflammatoires. Étant donné que ces patients reçoivent d’autres médicaments, il était intéressant de documenter les effets du CS sur le cytochrome P450 et la NADPH-réductase (NADPH). Pour cette étude, deux modèles ont été utilisés: des lapins témoins (LT) et des lapins avec une réaction inflammatoire (LRI) afin de diminuer l’activité et l’expression du CYP. Six groupes contenant chacun cinq lapins ont été utilisés: un groupe sans CS et deux groupes qui ont pris oralement dans l’eau approximativement 20.5 mg/kg/jour de CS pendant 20 et 30 jours; les lapins des trois groupes restants ont pris du CS comme décrit plus haut, mais ont reçu 5 ml sous-cutanées de térébenthine afin de produire une réaction inflammatoire aseptique (RIA) deux jours avant leur sacrifice, c’est-à-dire aux jours -2, 18 et 28. Les hépatocytes ont été isolés pour évaluer l’activité et l’expression du CYP3A6, CYP1A2 et NADPH et aussi le ARNm de ces protéines. In vitro, nous avons étudié l’effet de différentes concentrations de CS-disaccharides sulfatés, 4S, 6S, et 4,6S de CS, sur l’activité et l’expression du CYP1A2 et du CYP3A6. Pour documenter la présence de la réaction inflammatoire, nous avons mesure les mucoprotéines, dans le sérum des lapins avec une réaction inflammatoire. Aussi nous avons mesuré la présence de l’oxide nitrique (NO) chez les hépatocytes de lapins contrôles et chez les hépatocytes des lapins avec une réaction inflammatoire. La translocation nucléaire du NF-κB a été etudiée par fluorescence chez les hépatocytes. Par comparaison aux lapins témoins, l’administration du CS pendant 20 et 30 jours n’affecte pas l’activité du CYP3A6 et du CYP1A2. La RIA a augmenté les mucoprotéines à 95,1±5,7 vs 8,4±1,6 mg/dl dans les lapins témoins (p<0,05). La RIA a diminué l’activité du CYP3A6 de 62% et l’activité du CYP 1A2 de 54%. Le CS n’empêché pas la diminution du CYP1A2 produite par la RIA. Par ailleurs, le CS n’affecte pas l’activité ni l’expression de la NADPH. La translocation nucléaire de NF-κB a été empêche par l’administration chronique de CS aux lapins avec RIA; en plus, la concentration de l’oxide nitrique n’a pas démontré une augmentation en présence de CS; par contre, CS n’empêche pas l’augmentation des séromucoïdes. Au contraire, CS affecte la diminution du CYP3A6 en fonction de temps et secondaire à la RIA. Dans ce group, CS a rétabli le niveau des protéines du CYP3A6 observé dans le group de lapins témoins. Pourtant cette croissance été independante de mRNA qui garde un niveau trés bas. Le plus remarcable a été la manière dont CS a augmenté la protéine du CYP3A6, sans avoir rétabli l’activité de cet isoforme. Finalement, in vitro, CS et ses trois disaccharides sulfatés (4S, 6S et 4,6S) n’affectent ni l’activité ni l’expression de CYP1A2, CYP3A6 et de la NADPH. En conclusion, l’administration chronique de CS n’affecte pas l’activité ni l’expression du CYP1A2, ou la diminution du CYP1A2 produite par la réaction inflammatoire. Le CS n’affecte pas l’activité ni l’expression du NADPH. Cependant, CS empêche la diminution du CYP3A6 en fonction de temps et secondaire à la RIA.
Resumo:
L’activité catalytique du cytochrome P450 dépend de la disponibilité d’électrons produits par la NADPH P450 réductase (NPR). Notre étude a pour but de déterminer comment l’expression de la NPR est modulée chez le lapin. Afin de comprendre comment l’expression de la NPR est modulée, des hépatocytes de lapins témoins ont été incubés pendant 2, 4, 24 et 48 heures en présence de plusieurs activateurs de facteurs de transcription connus du cytochrome P450. De plus, des lapins ayant reçu une injection sous-cutanée de térébenthine afin de produire une réaction inflammatoire aseptique sont sacrifiés 48 heures plus tard dans le but d’étudier les effets de l’inflammation sur l’expression de la NPR. La rosiglitazone, le fénofibrate, l’acétate de plomb et le chlorure de cobalt (des inducteurs des PPAR, PPAR, AP-1 et HIF-1), après 48 heures d’incubation, n’ont provoqué aucun changement d’expression ou d’activité de la NPR. Après 48 heures d’incubation, la dexaméthasone (Dexa) a augmenté la quantité d’ARNm (QT-PCR), l’expression et l’activité de la NPR (p<0,05), en plus d’augmenter l’ARNm des récepteurs nucléaires CAR (récepteur constitutif à l’androstane) et PXR (récepteur X prégnane) (p<0.05). Le phénobarbital (PB) a augmenté seulement l’activité de la NPR (p<0.05). Par contre, après 48 heures d’incubation, la combinaison PB et Dexa a augmenté la quantité d’ARNm, ainsi que l’expression et l’activité de la NPR (p<0.05). La combinaison de PB et Dexa a induit une augmentation d’ARNm des récepteurs nucléaires CAR, PXR et RXR (récepteur X du rétinoïde) plus précocement, soit après 2 heures d’incubation (p<0.05). Le PD098059 (PD), un bloqueur de l’activation de MAPK1 (mitogen-activated protein kinase), et l’acide okadaïque (OA), un inhibiteur de la protéine phosphatase 2A (PP2A), ont bloqué l'augmentation d'expression et d'activité de la NPR induite par le PB après 48 heures d’incubation. La réaction inflammatoire aseptique a diminué l’expression et l’activité de la NPR après 48 heures d’incubation (p<0.05). On conclue que la dexaméthasone et le phénobarbital sont des inducteurs potentiels de la NPR et que les voies de signalisation de CAR, PXR et RXR semblent être impliquées dans le contrôle de cette induction. Des études supplémentaires devront être complétées afin de confirmer ces résultats préliminaires.
Resumo:
The enzymatic activity of thioredoxin reductase enzymes is endowed by at least two redox centers: a flavin and a dithiol/disulfide CXXC motif. The interaction between thioredoxin reductase and thioredoxin is generally species-specific, but the molecular aspects related to this phenomenon remain elusive. Here, we investigated the yeast cytosolic thioredoxin system, which is composed of NADPH, thioredoxin reductase (ScTrxR1), and thioredoxin 1 (ScTrx1) or thioredoxin 2 (ScTrx2). We showed that ScTrxR1 was able to efficiently reduce yeast thioredoxins (mitochondrial and cytosolic) but failed to reduce the human and Escherichia coli thioredoxin counterparts. To gain insights into this specificity, the crystallographic structure of oxidized ScTrxR1 was solved at 2.4 angstrom resolution. The protein topology of the redox centers indicated the necessity of a large structural rearrangement for FAD and thioredoxin reduction using NADPH. Therefore, we modeled a large structural rotation between the two ScTrxR1 domains (based on the previously described crystal structure, PDB code 1F6M). Employing diverse approaches including enzymatic assays, site-directed mutagenesis, amino acid sequence alignment, and structure comparisons, insights were obtained about the features involved in the species-specificity phenomenon, such as complementary electronic parameters between the surfaces of ScTrxR1 and yeast thioredoxin enzymes and loops and residues (such as Ser(72) in ScTrx2). Finally, structural comparisons and amino acid alignments led us to propose a new classification that includes a larger number of enzymes with thioredoxin reductase activity, neglected in the low/high molecular weight classification.
Resumo:
In young cells of leaf meristems the progenitors of chloroplasts are small organelles known as proplastids, which divide and differentiate into chloroplasts. However, in the absence of light, proplastids undergo a different sequence of development and become etioplasts. When light is supplied to etiolated plants during the "greening" process, etioplasts differentiate into chloroplasts containing chlorophyll. An important light dependent step in chlorophyll biosynthesis is the photoreduction of protochlorophyllide to chlorophyllide by the NADPH:protochlorophyllide reductase (PCR) enzyme. This enzyme is present at high activity only in etiolated tissue and during early stages of light-induced chlorophyll synthesis. The enzyme and its corresponding mRNAs decrease dramatically with prolonged exposure to light. We have investigated the light-dependent transcriptional regulation of a PCR gene in greening maize leaf cells using a transient expression assay based on microprojectile bombardment. The promoter region was isolated and cloned into a ?-glucuronidase (GUS) reporter gene expression plasmid. We have used this chimeric plasmid in tungsten particle bombardment of both etiolated and greening maize seedling leaves to determine whether the cloned promoter region contains regulatory sequences that control light-responsive PCR gene expression.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The enzymatic activity of thioredoxin reductase enzymes is endowed by at least two redox centers: a flavin and a dithiol/disulfide CXXC motif. The interaction between thioredoxin reductase and thioredoxin is generally species-specific, but the molecular aspects related to this phenomenon remain elusive. Here, we investigated the yeast cytosolic thioredoxin system, which is composed of NADPH, thioredoxin reductase (ScTrxR1), and thioredoxin 1 (ScTrx1) or thioredoxin 2 (ScTrx2). We showed that ScTrxR1 was able to efficiently reduce yeast thioredoxins (mitochondrial and cytosolic) but failed to reduce the human and Escherichia coli thioredoxin counterparts. To gain insights into this specificity, the crystallographic structure of oxidized ScTrxR1 was solved at 2.4 angstrom resolution. The protein topology of the redox centers indicated the necessity of a large structural rearrangement for FAD and thioredoxin reduction using NADPH. Therefore, we modeled a large structural rotation between the two ScTrxR1 domains (based on the previously described crystal structure, PDB code 1F6M). Employing diverse approaches including enzymatic assays, site-directed mutagenesis, amino acid sequence alignment, and structure comparisons, insights were obtained about the features involved in the species-specificity phenomenon, such as complementary electronic parameters between the surfaces of ScTrxR1 and yeast thioredoxin enzymes and loops and residues (such as Ser(72) in ScTrx2). Finally, structural comparisons and amino acid alignments led us to propose a new classification that includes a larger number of enzymes with thioredoxin reductase activity, neglected in the low/high molecular weight classification.
Resumo:
Pimelic acid formation for biotin biosynthesis in Bacillus subtilis has been proposed to involve a cytochrome P450 encoded by the gene biol. We have subcloned bioI and overexpressed the encoded protein, BioI. A purification protocol was developed utilizing ion exchange, gel filtration, and hydroxyapatite chromatography, Investigation of the purified BioI by UV-visible spectroscopy revealed spectral properties characteristic of a cytochrome P450 enzyme. BioI copurifies with acylated Escherichia coil acyl carrier protein (ACP), suggesting that in vivo a fatty acid substrate may be presented to BioI as an acyl-ACP. A combination of electrospray mass spectrometry of the intact acyl-ACP and GCMS indicated a range of fatty acids were bound to the ACP. A catalytically active system has been established employing E. coli flavodoxin reductase and a novel, heterologous flavodoxin as the redox partners for BioI. In this system, BioI cleaves a carbon-carbon bond of an acyl-ACP to generate a pimeloyl-ACP equivalent, from which pimelic acid is isolated after base-catalyzed saponification. A range of free fatty acids have also been explored as potential alternative substrates for BioI, with C16 binding most tightly to the enzyme. These fatty acids are also metabolized to dicarboxylic acids, but with less regiospecificity than is observed with acyl-ACPs. A possible mechanism for this transformation is discussed. These results strongly support the proposed role for BioI in biotin biosynthesis. In addition, the production of pimeloyl-ACP explains the ability of BioI to function as a pimeloyl CoA source in E. coli, which, unlike B. subtilis, is unable to utilize free pimelic acid for biotin production. (C) 2000 Academic Press.
Resumo:
A variety of polycyclic aromatic hydrocarbons and their dihydrodiol derivatives, arylamines, heterocyclic amines, and nitroarenes, were incubated with cDNA-based recombinant (Escherichia coli or Trichoplusia ni) systems expressing different forms of human cytochrome P450 (P450 or CYP) and NADPH-P450 reductase using Salmonella typhimurium, tester strain NM2009, and the resultant DNA damage caused by the reactive metabolites was detected by measuring expression of umu gene in the cells. Recombinant (bacterial) CYP1A1 was slightly more active than any of four CYP1B1 allelic variants, CYP1B1*1, CYP1B1*2, CYP1B1*3, and CYP1B1*6, in catalyzing activation of chrysene-1,2-diol, benz[a]anthracene-trans-1,2-, 3,4-, 5,6-, and 8,9-diol, fluoranthene-2,3-diol, dibenzo[a]pyrene, benzo[c]phenanthrene, and dibenz[a,h]anthracene and several arylamines and heterocyclic amines, whereas CYP1A1 and CYP1B1 enzymes had essentially similar catalytic specificities toward other procarcinogens, such as (+)-, (-)-, and (+/-)-benzo[a]pyrene-7,8-diol, 5-methylchrysene-1,2-diol, 7,12-dimethylbenz[a]anthracene-3,4-diol, dibenzo[a,l]pyrene-11,12-diol, benzo[b]fluoranthene-9,10-diol, benzo[c]chrysene, 5,6-dimethylchrysene-1,2-diol, benzo[c]phenanthrene-3,4-diol, 7,12-dimethylbenz[a]anthracene, benzo[a]pyrene, 5-methylchrysene, and benz[a]anthracene. We also determined activation of these procarcinogens by recombinant (T. ni) human P450 enzymes in S. typhimurium NM2009. There were good correlations between activities of procarcinogen activation by CYP1A1 preparations expressed in E. coli and T. ni cells, although basal activities with three lots of CYP1B1 in T. ni cells were very high without substrates and NADPH in our assay system. Using 14 forms of human P450S (but not CYP1B1) (in T. ni cells), we found that CY1P1A2, 2C9, 3A4, and 2C19 catalyzed activation of several of polycyclic aromatic hydrocarbons at much slower rates than those catalyzed by CYP1A1 and that other enzymes, including CYP2A6, 2B6, 2C8, 2C18, 2D6, 2E1, 3A5, 3A7, and 4A11, were almost inactive in the activation of polycyclic aromatic hydrocarbons examined here.
Resumo:
1. Eight human cytochrome P4501B1 (CYP1B1) allelic variants, namely Arg(48)Ala(119)Leu(432), Arg(48)Ala(119)Val(432), Gly(48)Ala(119)Leu(432), Gly(48)Ala(119)Val(432), Arg(48)Ser(119)Leu(432), Arg(48)Ser(119)Val(432), Gly(48)Ser(119)Leu(432) and Gly(48)Ser(119)Val(432) (all with Asn(453)), were expressed in Escherichia coli together with human NADPH-P450 reductase and their catalytic specificities towards oxidation of 17 beta -oestradiol and benzo[a]pyrene were determined. 2. All of the CYP1B1 variants expressed in bacterial membranes showed Fe2+. CO versus Fe2+ difference spectra with wavelength maxima at 446 nm and they reacted with antibodies raised against recombinant human CYP1B1 in immunoblots. The ratio of expression of the reductase to CYP1B1 in these eight preparations ranged from 0.2 to 0.5. 3. CYP1B1 Arg(48) variants tended to have higher activities for 17 beta -oestradiol 4-hydroxylation than Gly(48) variants, although there were no significant variations in 17 beta -oestradiol 2-hydroxylation activity in these eight CYP1B1 variants. Interestingly, ratios of formation of 17 beta -oestradiol 4-hydroxylation to 2-hydroxylation by these CYP1B1 variants were higher in all of the Val(432) forms than the corresponding Leu(432) forms. 4. In contrast, Leu(432) forms of CYP1B1 showed higher rates of oxidation of benzo[a]pyrene (to the 7, 8-dihydoxy-7,8-dihydrodiol in the presence of epoxide hydrolase) than did the Val(432) forms. 5. These results suggest that polymorphic human CYP1B1 variants may cause some altered catalytic specificity with 17 beta -oestradiol and benzo[a]pyrene and may influence susceptibilities of individuals towards endogenous and exogenous carcinogens.