1000 resultados para NURSE CELL


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A triquinelose é uma zoonose parasitária que é transmitida aos humanos e animais, através da ingestão de carne crua ou insuficientemente cozinhada, que contenha larvas infectantes de Trichinella spp., sendo actualmente considerada uma doença emergente e/ou re-emergente. O sucesso do parasitismo do nemátode Trichinella spiralis está intimamente ligado com o processo de angiogénese, ou seja, a formação de novos vasos a partir de vasos pré-existentes. Com o objectivo de estudar a actividade angiogénica na nurse cell de T. spiralis, realizaram-se técnicas imunohistoquímicas e imunofluorescentes para o factor de crescimento endotelial vascular (VEGF), molécula-1 de adesão celular endotelial a plaquetas (PECAM-1) e actina músculo liso (AML), em tecido muscular de Rattus rattus infectado com T. spiralis. Através destas técnicas observou-se marcação intensa no infiltrado inflamatório adjacente à nurse cell e também na larva. Já o citoplasma da nurse cell apresentou uma marcação moderada. Este padrão de marcação manteve-se desde os 45 até aos 120 dias após a infecção. A avaliação da densidade vascular (PECAM-1) e da densidade da expressão de células positivas para AML permitiu estabelecer uma correlação positiva entre o aumento da densidade vascular e o número de dias de infecção. Adicionalmente estabeleceu-se uma correlação negativa entre o aumento da densidade de células que expressam AML e o número de dias de infecção. Os resultados indicam uma produção constante de VEGF pela larva, pelo citoplasma da nurse cell e pelo hospedeiro (infiltrado inflamatório), durante todo período de infecção, levando à formação de uma rede vascular crescente (com um aumento médio de 79% face ao controlo), acompanhada de células murais que promovem a sua estabilização (com um aumento médio de 50% face ao controlo) com particular incidência no primeiro período estudado (45 a 55 dias).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DNA probes were used in in situ hybridisation on histological sections of oysters exposed for defined intervals to Marteilia sydneyi infection to reveal the early development of the parasite in the oyster host, Saccostrea glomerata. The initial infective stages enter through the palps and gills whereupon extrasporogonic proliferation results in the liberation of cells into surrounding connective tissue and haemolymph spaces. Following systemic dissemination, the parasite infiltrates the digestive gland and becomes established as a nurse cell beneath the epithelial cells ill a digestive tubule. Here, cell-within-cell proliferation results in the eventual liberation of daughter cells from the nurse cell into spaces between adjacent epithelial cells. None of these stages had previously been described. Proliferation is associated with host responses, including haemocytic infiltration of the connective tissue and diapedesis across tubule epithelia. The responses cease as sporogenesis begins. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pseudacteon wasmanni is a South American decapitating fly that parasitizes workers of Solenopsis fire ants. We used light microscopy (historesin serial-sectioning stained with Haematoxylin/Eosin) and scanning electron microscopy to show and analyze internal and whole external views of the female reproductive system. All specimens analyzed (n = 9) by light microscopy showed post-vitellogenic oocytes inside the ovaries. The lack of typical follicles (oocyte-nurse cell complexes) in all specimens suggests that oogenesis occurs during the pupal stage. The total number of eggs found ranged from 31 to 280 (X = 142 +/- 73, SD). The egg has a slugform or torpedo shape (about 130 by 20 mum) with a pointed apex at the posterior pole as defined by the fly; the micropyle appears to be in a depression or invagination at the anterior pole. An acute hypodermic-like ovipositor is evaginated from the hard sclerotized external genitalia during egg laying. The existence of a muscular bulb associated with the end of the common oviduct suggests that the egg is injected into the ant's body by a strong contraction of the bulb which probably is stimulated by bending of several ventral sensilla. During contraction, the abdomen extends out along a large fold between the sixth and seventh tergites in such a way that the sclerotized genitalia is rotated ventrally into a slightly anterior orientation in preparation for oviposition. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Neoponera villosa ants, we found ovaries of the polytrophic meroistic type which is characterized by the presence of nurse cells forming together with the oocyte, the so-called follicles. The nurse cells have the primary function of supplying the oocyte with RNA, but they contribute to the supply of other elements such as glycogen. With the objetive of detecting the presence of this substance in the ovarioles of workers and queens of N.villosa ante the ovaries were removed and processed according to electron microscopy technic for glycogen detection. Glycogen is a common element in insect oocytes and is abundantly distributed in the cytoplasm of N.villosa workers and queens. However, in ovarian follicles it can only be detected at stages ET and lit of development. Glycogen synthesis probably occurs predominantly in nurse cells which transfer it into the oocyte through the nourish pore. This process requires high energy expenditure that justify the large numbers of mitochondria associated with glycogen in the nurse cell cytoplasm. The amount of glycogen in the nurse cells of queens is slightly greater than workers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Neoponera villosa ants, we found ovaries of the polytrophic meroistic type which is characterized by the presence of nurse cells forming together with the oocyte, the so-called follicles. The nurse cells have the primary function of supplying the oocyte with RNA, but they contribute to the supply of other elements such as glycogen. With the objetive of detecting the presence of this substance in the ovarioles of workers and queens of N. viillosa ants the ovaries were removed and processed according to electron microscopy technic for glycogen detection. Glycogen is a common element in insect oocytes and is abundantly distributed in the cytoplasm of N. villosa workers and queens. However, in ovarian follicles it can only be detected at stages II and III of development. Glycogen synthesis probably occurs predominantly in nurse cells which transfer it into the oocyte through the nourish pore. This process requires high energy expenditure that justify the large numbers of mitochondria associated with glycogen in the nurse cell cytoplasm. The amount of glycogen in the nurse cells of queens is slightly greater than workers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Dipteran a native Brazilian insect that has become a valuable model system for developmental biology research because it provides an interesting opportunity to study a different type of insect oogenesis. Sequences from a cDNA library that was constructed with poly A + RNA from the ovaries of larvae at different ages were analyzed. Molecular characterization confirmed interesting findings, such as the presence of . The gene encodes a conserved RNA-binding protein that is required during early development for the maintenance and division of the primordial germ cells of Diptera. plays an important role in specifying the posterior regions of insect embryos and is important for abdomen formation. In the present work, we showed the spatial and temporal expression profiles of this important gene, which is involved in oogenesis and early development. Data mining techniques were used to obtain the complete sequence of . Bioinformatic tools were used to determine the following: (1) the secondary structure of the 3'-untranslated region of the mRNA, (2) the encoded protein of the isolated gene, (3) the conserved zinc-finger domains of the Nanos protein, and (4) phylogenetic analyses. Furthermore, RNA in situ hybridization and immunolocalization were used to determine mRNA and protein expression in the tissues that were studied and to define as a germ cell molecular marker.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The occurrence of cell reabsorption in the ovaries of queens in several rates of laying eggs, artificially impeded of laying, and in nurse workers, of Apis mellifera (Linnaeus, 1758), was studied with light (LM) and transmission electron microscopy (TEM). Two types of structures were described and named by analogy with vertebrates ovarian structures, as corpus luteus, when resulting from the reabsorption of the follicular cells after ovulation, and corpus atresicus when resulting from total follicular reabsorption at any oocyte developmental stage. These structures have the same morphological characteristics and physiological signification in both castes. The corpus luteus occurrence indicates ovulation and its number is correspondent to the queen's rates of oviposition. The presence of this structure in nurse workers ovarioles shows that this caste may lay eggs. The incidence of corpus atresicus in queens decay with the increasing of the oviposition indicating that the inhibition of the normal sequence of oocyte maturation in the ovaries is deleterious. Both, corpus luteus and corpus atresicus incidence may be influenced by environmental factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How do cells sense their own size and shape? And how does this information regulate progression of the cell cycle? Our group, in parallel to that of Paul Nurse, have recently demonstrated that fission yeast cells use a novel geometry-sensing mechanism to couple cell length perception with entry into mitosis. These rod-shaped cells measure their own length by using a medially-placed sensor, Cdr2, that reads a protein gradient emanating from cell tips, Pom1, to control entry into mitosis. Budding yeast cells use a similar molecular sensor to delay entry into mitosis in response to defects in bud morphogenesis. Metazoan cells also modulate cell proliferation in response to their own shape by sensing tension. Here I discuss the recent results obtained for the fission yeast system and compare them to the strategies used by these other organisms to perceive their own morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frieseomelitta varia worker bees do not lay eggs even when living in queenless colonies, a condition that favors ovary development and oviposition in the majority of highly social bees. The permanent sterility of these worker bees was initially attributed to a failure in ovary morphogenesis and differentiation. Using transmission electron microscopy we found that at the beginning of the pupal phase the ovaries of F. varia workers are formed by four ovarioles, each of them composed of 1) a terminal filament at the apex of the ovarioles, containing juxtaposed and irregularly shaped cells, 2) a germarium with clusters of cystocytes and prefollicular cells showing long cytoplasmic projections that envelop the cystocyte clusters, 3) fusiform interfollicular and basal stalk precursor cells, and 4) globular, irregularly contoured basal cells with large nuclei. However, during the pupal phase an accentuated and progressive process of cell death takes place in the ovarioles. The dying cells are characterized by large membrane bodies, electron-dense apoptotic bodies, vacuoles, vesiculation, secondary lysosomes, enlarged rough endoplasmic reticulum cisternae, swollen mitochondria, pycnotic nuclei, masses of chromatin adjacent to the convoluted nuclear envelope, and nucleoli showing signs of fragmentation. Cell death continues in ovarioles even after the emergence of the workers. Once they become nurse bees, the ovaries have become transformed into a cell mass in which structurally organized ovarioles can no longer be identified. In F. varia workers, ovariole cell death most certainly is part of the program of caste differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The essential p21-activated kinase (PAK), Shk1, is a critical component of a Ras/Cdc42/PAK complex required for cell viability, normal cell polarity, proper regulation of cytoskeletal dynamics, and sexual differentiation in the fission yeast, Schizosaccharomyces pombe. While cellular functions of PAKs have been described in eukaryotes from yeasts to mammals, the molecular mechanisms of PAK regulation and function are poorly understood. This study has characterized a novel Shk1 inhibitor, Skb15, and, in addition, identified the cell polarity regulator, Tea1, as a potential biological substrate of Shk1 in S. pombe. Skb15 is a highly conserved WD repeat protein that was discovered from a two-hybrid screen for proteins that interact with the catalytic domain of Shk1. Molecular data indicate that Skb15 negatively regulates Shk1 kinase activity in S. pombe cells. A null mutation in the skb15 gene is lethal and results in deregulation of actin polymerization and localization, microtubule biogenesis, and the cytokinetic machinery, as well as a substantial uncoupling of these processes from the cell cycle. Loss of Skb15 function is suppressed by partial loss of Shk1, demonstrating that negative regulation of Shk1 by Skb15 is required for proper execution of cytoskeletal remodeling and cytokinetic functions. A mouse homolog of Skb15 can substitute for its counterpart in fission yeast, demonstrating that Skb15 protein function has been substantially conserved through evolution. ^ Our laboratory has recently demonstrated that Shk1, in addition to regulating actin cytoskeletal organization, is required for proper regulation of microtubule dynamics in S. pombe cells. The Shk1 protein localizes to interphase and mitotic microtubules, the septum-forming region, and cell ends. This pattern of localization overlaps with that of the cell polarity regulator, Tea1, in S. pombe cells. The tea1 gene was identified by Paul Nurse's laboratory from a screen for genes involved in the control of cell morphogenesis in S. pombe. In contrast to wild type S. pombe cells, which are rod shaped, tea1 null cells are often bent and/or branched in shape. The Tea1 protein localizes to the cell ends, like Shk1, and the growing tips of interphase microtubules. Thus, experiments were performed to investigate whether Tea1 interacts with Shk1. The tea1 null mutation strongly suppresses the loss of function of Skb15, an essential inhibitor of Shk1 function. All defects associated with the skb15 mutation, including defects in F-actin organization, septation, spindle elongation, and chromosome segregation, are suppressed by tea1Δ, suggesting that Tea1 may function in these diverse processes. Consistent with a role for Tea1 in cytokinesis, tea1Δ cells have a modest cell separation defect that is greatly exacerbated by a shk1 mutation and, like Shk1, Tea1 localizes to the septation site. Molecular analyses showed that Tea1 phosphorylation is significantly dependent on Shk1 function in vivo and that bacterially expressed Tea1 protein is directly phosphorylated by recombinant Shk1 kinase in vitro. Taken together, these results identify Tea1 as a potential biological substrate of Shk1 in S. pombe. ^ In summary, this study provides new insights into a conserved regulatory mechanism for PAKs, and also begins to uncover the molecular mechanisms by which the Ras/Cdc42/PAK complex regulates the microtubule and actin cytoskeletons and cell growth polarization in fission yeast. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular mechanisms that coordinate cell morphogenesis with the cell cycle remain largely unknown. We have investigated this process in fission yeast where changes in polarized cell growth are coupled with cell cycle progression. The orb6 gene is required during interphase to maintain cell polarity and encodes a serine/threonine protein kinase, belonging to the myotonic dystrophy kinase/cot1/warts family. A decrease in Orb6 protein levels leads to loss of polarized cell shape and to mitotic advance, whereas an increase in Orb6 levels maintains polarized growth and delays mitosis by affecting the p34cdc2 mitotic kinase. Thus the Orb6 protein kinase coordinates maintenance of cell polarity during interphase with the onset of mitosis. orb6 interacts genetically with orb2, which encodes the Pak1/Shk1 protein kinase, a component of the Ras1 and Cdc42-dependent signaling pathway. Our results suggest that Orb6 may act downstream of Pak1/Shk1, forming part of a pathway coordinating cell morphogenesis with progression through the cell cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The “cut” mutants of Schizosaccharomyces pombe are defective in spindle formation and/or chromosome segregation, but they proceed through the cell cycle, resulting in lethality. Analysis of temperature-sensitive alleles of cut11+ suggests that this gene is required for the formation of a functional bipolar spindle. Defective spindle structure was revealed with fluorescent probes for tubulin and DNA. Three-dimensional reconstruction of mutant spindles by serial sectioning and electron microscopy showed that the spindle pole bodies (SPBs) either failed to complete normal duplication or were free floating in the nucleoplasm. Localization of Cut11p tagged with the green fluorescent protein showed punctate nuclear envelope staining throughout the cell cycle and SPBs staining from early prophase to mid anaphase. This SPB localization correlates with the time in the cell cycle when SPBs are inserted into the nuclear envelope. Immunoelectron microscopy confirmed the localization of Cut11p to mitotic SPBs and nuclear pore complexes. Cloning and sequencing showed that cut11+ encodes a novel protein with seven putative membrane-spanning domains and homology to the Saccharomyces cerevisiae gene NDC1. These data suggest that Cut11p associates with nuclear pore complexes and mitotic SPBs as an anchor in the nuclear envelope; this role is essential for mitosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to analyze the frequency of epidermal growth factor receptor (EGFR) mutations in Brazilian non-small cell lung cancer patients and to correlate these mutations with response to benefit of platinum-based chemotherapy in non-small cell lung cancer (NSCLC). Our cohort consisted of prospective patients with NSCLCs who received chemotherapy (platinum derivates plus paclitaxel) at the [UNICAMP], Brazil. EGFR exons 18-21 were analyzed in tumor-derived DNA. Fifty patients were included in the study (25 with adenocarcinoma). EGFR mutations were identified in 6/50 (12 %) NSCLCs and in 6/25 (24 %) adenocarcinomas; representing the frequency of EGFR mutations in a mostly self-reported White (82.0 %) southeastern Brazilian population of NSCLCs. Patients with NSCLCs harboring EGFR exon 19 deletions or the exon 21 L858R mutation were found to have a higher chance of response to platinum-paclitaxel (OR 9.67 [95 % CI 1.03-90.41], p = 0.047). We report the frequency of EGFR activating mutations in a typical southeastern Brazilian population with NSCLC, which are similar to that of other countries with Western European ethnicity. EGFR mutations seem to be predictive of a response to platinum-paclitaxel, and additional studies are needed to confirm or refute this relationship.