994 resultados para NUCLEAR RECEPTORS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nurr1, NGFI-B and Nor1 (NR4A2, NR4A1 and NR4A3, respectively) belong to the NR4A subfamily of nuclear receptors. The NR4A receptors are orphan nuclear receptors which means that activating or repressing ligands for these receptors have not been found. NR4A expression is rapidly induced in response to various stimuli including growth factors and the parathyroid hormone (PTH). The studies concerning the NR4A receptors in the central nervous system have demonstrated that they have a major role in the development and function of the dopaminergic neurons of the midbrain and in regulating hypothalamus-pituitary-adrenal-axis. However, the peripheral functions of the NR4A family are largely unknown. Cultured mouse primary osteoblasts, a preosteoblastic cell line and several osteoblastic cell lines were used to investigate the role of NR4A receptors in osteoblasts. NR4A receptors were shown to directly bind to and activate the promoter of the osteopontin gene (OPN) in osteoblastic cells, thus regulating its expression. OPN is a major bone matrix protein expressed throughout the differentiation of preosteoblastic cells into osteoblasts. The activation of the OPN promoter was shown to be dependent on the activation function-1 located in the N-terminal part of Nurr1 and to occur in both monomeric and RXR heterodimeric forms of NR4A receptors. Furthermore, PTH was shown to upregulate OPN expression through the NR4A family. It was also demonstrated that the fibroblast growth factor-8b (FGF-8b) induces the expression of NR4A receptors in osteoblasts as immediate early genes. This induction involved phosphatidylinositol-3 kinase, protein kinase C, and mitogen activated protein kinase, which are all major pathways of FGF signalling. Nurr1 and NGFI-B were shown to induce the proliferation of preosteoblastic cells and to reduce their apoptosis. FGF-8b was shown to stimulate the proliferation of osteoblastic cells through the NR4A receptors. These results suggest that NR4A receptors have a role both in the differentiation of osteoblasts and in the proliferation and apoptosis of preosteoblast. The NR4A receptors were found to bind to the same response element on OPN as the members of the NR3B family of orphan receptors do. Mutual repression was observed between the NR4A receptors and the NR3B receptors. This repression was shown to be dependent on the DNA-binding domains of both receptor families, but to result neither from the competition of DNA binding nor from the competition for coactivators. As the repression was dependent on the relative expression levels of the NR4As and NR3Bs, it seems likely that the ratio of the receptors mediates their activity on their response elements. Rapid induction of the NR4As in response to various stimuli and differential expression of the NR3Bs can effectively control the gene activation by the NR4A receptors. NR4A receptors can bind DNA as monomers, and Nurr1 and NGFI-B can form permissive heterodimers with the retinoid X receptor (RXR). Permissive heterodimers can be activated with RXR agonists, unlike non-permissive heterodimers, which are formed by RXR and retinoic acid receptor or thyroid hormone receptor (RAR and TR, respectively). Non-permissive heterodimers can only be activated by the agonists of the heterodimerizing partner. The mechanisms behind differential response to RXR agonists have remained unresolved. As there are no activating or repressing ligands for the NR4A receptors, it would be important to find out, how they are regulated. Permissiviness of Nurr1/RXR heterodimers was linked to the N-terminal part of Nurr1 ligand-binding domain. This region has previously been shown to mediate the interaction between NRs and corepressors. Non-permissive RAR and TR, permissive Nurr1 and NGFI-B, and RXR were overexpressed with corepressors silencing mediator for retinoic acid and thyroid hormone receptors (SMRT), and with nuclear receptor corepressor in several cell lines. Nurr1 and NGFI-B were found to be repressed by SMRT. The interaction of RXR heterodimers with corepressors was weak in permissive heterodimers and much stronger in non-permissive heterodimers. Non-permissive heterodimers also released corepressors only in response to the agonist of the heterodimeric partner of RXR. In the permissive Nurr1/RXR heterodimer, however, SMRT was released following the treatment with RXR agonists. Corepressor release in response to ligands was found to differentiate permissive heterodimers from non-permissive ones. Corepressors were thus connected to the regulation of NR4A functions. In summary, the studies presented here linked the NR4A family of orphan nuclear receptors to the regulation of osteoblasts. Nurr1 and NGFI-B were found to control the proliferation and apoptosis of preosteoblasts. The studies also demonstrated that cross-talk with the NR3B receptors controls the activity of these orphan receptors. The results clarified the mechanism of permissiviness of RXR-heterodimers. New information was obtained on the regulation and functions of NR4A receptors, for which the ligands are unknown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear receptors (NRs) comprise a large family of proteins that mediate the effects of small lipophilic molecules such as steroid hormones. In addition, there are a group of NRs which lack identified natural ligands and are referred as orphan NRs. In this thesis, the function of two such orphan NR families, the NR3B (ERRα, ERRβ and ERRγ) and the NR4A family (NGFI-B, Nurr1 and Nor1), was studied. NR3B and NR4A receptors regulate many biological processes such as energy metabolism and carcinogenesis. In addition, NR3B and NR4A receptors are expressed in bone. Therefore, the signaling and function of NR3B and NR4A orphan nuclear receptors was studied specifically in osteoblasts. NR4A receptors were found to be regulated by NR3B receptors and the Wnt/β-catenin signaling pathway as ERRα, ERRγ and β-catenin repressed the transcriptional activity of NR4A receptors in U2-OS cells. NGFI-B was found to repress the transcriptional activity of ERRγ in HeLa cells. The phytoestrogen equol was identified as a new agonist for ERRγ and ERRβ in PC-3, U2-OS, and SaOS-2 cells. Equol increased the transcriptional activity of ERRγ by increasing ERRγ co-activator binding and by inducing a conformational change in the ligand binding pocket of ERRγ. The growth inhibitory effect of equol on PC-3 prostate cancer cells was decreased by blocking ERRγ expression by siRNA. Therefore, ERRγ could mediate some of the beneficial health effects of equol. The Wnt/β-catenin signaling pathway is important for the differentiation and function of osteoblasts. NR3B and NR4A receptors were found to repress the transcriptional activity mediated by β-catenin in U2-OS cells. The mesenchymal stem cells (MSCs) isolated from ERRα knockout (KO) mice showed diminished proliferation and osteoblastic differentiation compared to the wild-type cells. The overexpression of ERRα in osteoblastic MC3T3-E1 cell line increased their mineralization. Bone sialoprotein (BSP) was shown to be a direct target gene for ERRα and ERRγ as the BSP promoter was activated by ERRα or ERRγ and PGC-1α in HeLa cells. The adipogenic differentiation of ERRα KO MSCs was also decreased and they expressed less adipogenic marker genes. In conclusion, the studies described in this thesis demonstrated that the transcriptional activity of NR3B and NR4A receptors can be regulated by other orphan NRs and signaling pathways in osteoblasts. NR3B receptors can also be regulated by ligands and a new agonist, equol, was identified for ERRβ and ERRγ. New roles for NR3B and NR4A were also identified as they were shown to converge with the Wnt signaling pathway in osteoblasts, ERRγ was shown to mediate the growth inhibitory effect of equol in prostate cancer cells, and ERRα was shown to regulate positively MSC proliferation, osteoblastic differentiation and adipogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasingly invasive bladder cancer cells lines displayed insensitivity toward a panel of dietary-derived ligands for members of the nuclear receptor superfamily. Insensitivity was defined through altered gene regulatory actions and cell proliferation and reflected both reduced receptor expression and elevated nuclear receptor corepressor 1 (NCOR1) expression. Stable overexpression of NCOR1 in sensitive cells (RT4) resulted in a panel of clones that recapitulated the resistant phenotype in terms of gene regulatory actions and proliferative responses toward ligand. Similarly, silencing RNA approaches to NCOR1 in resistant cells (EJ28) enhanced ligand gene regulatory and proliferation responses, including those mediated by peroxisome proliferator-activated receptor (PPAR) gamma and vitamin D receptor (VDR) receptors. Elevated NCOR1 levels generate an epigenetic lesion to target in resistant cells using the histone deacetylase inhibitor vorinostat, in combination with nuclear receptor ligands. Such treatments revealed strong-additive interactions toward the PPARgamma, VDR and Farnesoid X-activated receptors. Genome-wide microarray and microfluidic quantitative real-time, reverse transcription-polymerase chain reaction approaches, following the targeting of NCOR1 activity and expression, revealed the selective capacity of this corepressor to govern common transcriptional events of underlying networks. Combined these findings suggest that NCOR1 is a selective regulator of nuclear receptors, notably PPARgamma and VDR, and contributes to their loss of sensitivity. Combinations of epigenetic therapies that target NCOR1 may prove effective, even when receptor expression is reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A survey against the draft genome sequence and the cDNA/EST database of Ciona intestinalis identified a number of genes encoding transcription factors regulating a variety of processes including development. In the present study, we describe almost complete sets of genes for Fox, ETS-domain transcription factors, nuclear receptors, and NFkappaB as well as other factors regulating NFkappaB activity, with their phylogenetic nature. Vertebrate Fox transcription factors are currently delineated into 17 subfamilies: FoxA to FoxQ. The present survey yielded 29 genes of this family in the Ciona genome, 24 of which were Ciona orthologues of known Fox genes. In addition, we found 15 ETS aenes, 17 nuclear receptor genes, and several NFkappaB signaling pathway genes in the Ciona genome. The number of Ciona genes in each family is much smaller than that of vertebrates, which represents a simplified feature of the ascidian genome. For example, humans have two NFkappaB genes, three Rel genes, and five NFAT genes, while Ciona has one gene for each family. The Ciona genome also contains smaller numbers of genes for the NFkappaB regulatory system, i.e. after the split of ascidians/vertebrates, vertebrates evolved a more complex NFkappaB system. The present results therefore provide molecular information for the investigation of complex developmental processes, and an insight into chordate evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After birth the development of appropriate detoxification mechanisms is important. Nuclear receptors (NR), such as constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor-alpha (PPARalpha), retinoid receptors (RAR, RXR), and NR target genes are involved in the detoxification of exogenous and endogenous substances. We quantified abundances of hepatic mRNA of NR and several NR target genes (cytochromes, CYP; cytochrome P450 reductase, CPR; UDP-glucuronosyl transferase, UDP) in calves at different ages. Gene expression was quantified by real-time RT-PCR. Abundance of mRNA of CAR and PXR increased from low levels at birth in pre-term calves (P0) and full-term calves (F0) to higher levels in 5-day-old calves (F5) and in 159-day-old veal calves (F159), whereas mRNA levels of PPARalpha did not exhibit significant ontogenetic changes. RARbeta mRNA levels were higher in F5 and F159 than in F0, whereas no age differences were observed for RARalpha levels. Levels of RXRalpha and RXRbeta mRNA were lower in F5 than in P0 and F0. Abundance of CYP2C8 and CYP3A4 increased from low levels in P0 and F0 to higher levels in F5 and to highest levels in F159. Abundance of CPR was transiently decreased in F0 and F5 calves. Levels of UGT1A1 mRNA increased from low levels in P0 and F0 to maximal level in F5 and F159. In conclusion, mRNA levels of NR and NR target genes exhibited ontogenetic changes that are likely of importance for handling of xeno- and endobiotics with increasing age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatic nuclear receptors (NR), particularly constitutive androstane receptor (CAR) and pregnane X receptor (PXR), are involved in the coordinated transcriptional control of genes that encode proteins involved in the metabolism and detoxification of xeno- and endobiotics. A broad spectrum of metabolic processes are mediated by NR acting in concert with ligands such as glucocorticoids. This study examined the role of dexamethasone on hepatic mRNA expression of CAR, PXR and several NR target genes. Twenty-eight male calves were allotted to one of four treatment groups in a 2 x 2 arrangement of treatments: feed source (colostrum or milk-based formula) and glucocorticoid administration (twice daily intramuscular dexamethasone). Liver biopsies were obtained at 5 days of age. Real-time reverse transcription polymerase chain reaction was used to quantify mRNA abundances. No effects of feed source on mRNA abundances were observed. For the NR examined, mRNA abundance of both CAR and PXR in dexamethasone-treated calves was lower (p < 0.05) by 39% and 40%, respectively, than in control calves. Abundance of NR target genes exhibited a mixed response. SULT1A1 mRNA abundance was 39% higher (p < 0.05) in dexamethasone-treated calves compared with control calves. mRNA abundance of CYP2C8 tended also to be higher (+44%; p = 0.053) after dexamethasone treatment. No significant treatment effects (p > 0.10) were observed for mRNA abundances of CYP3A4, CYP2E1, SULT2A1, UGT1A1 or cytochrome P450 reductase (CPR). In conclusion, an enhanced glucocorticoid status, induced by pharmacological amounts of dexamethasone, had differential and in part unexpected effects on NR and NR target systems in 5-day-old calves. Part of the unexpected responses may be due the immaturity of NR and NR receptor target systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatic hydroxylation is an essential step in the metabolism and excretion of bile acids and is necessary to avoid pathologic conditions such as cholestasis and liver damage. In this report, we demonstrate that the human xenobiotic receptor SXR (steroid and xenobiotic receptor) and its rodent homolog PXR (pregnane X receptor) serve as functional bile acid receptors in both cultured cells and animals. In particular, the secondary bile acid derivative lithocholic acid (LCA) is highly hepatotoxic and, as we show here, a metabolic substrate for CYP3A hydroxylation. By using combinations of knockout and transgenic animals, we show that activation of SXR/PXR is necessary and sufficient to both induce CYP3A enzymes and confer resistance to toxicity by LCA, as well as other xenotoxicants such as tribromoethanol and zoxazolamine. Therefore, we establish SXR and PXR as bile acid receptors and a role for the xenobiotic response in the detoxification of bile acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Drosophila the response to the hormone ecdysone is mediated in part by Ultraspiracle (USP) and ecdysone receptor (EcR), which are members of the nuclear receptor superfamily. Heterodimers of these proteins bind to ecdysone response elements (EcREs) and ecdysone to modulate transcription. Herein we describe Drosophila hormone receptor 38 (DHR38) and Bombyx hormone receptor 38 (BHR38), two insect homologues of rat nerve growth factor-induced protein B (NGFI-B). Although members of the NGFI-B family are thought to function exclusively as monomers, we show that DHR38 and BHR38 in fact interact strongly with USP and that this interaction is evolutionarily conserved. DHR38 can compete in vitro against EcR for dimerization with USP and consequently disrupt EcR-USP binding to an EcRE. Moreover, transfection experiments in Schneider cells show that DHR38 can affect ecdysone-dependent transcription. This suggests that DHR38 plays a role in the ecdysone response and that more generally NGFI-B type receptors may be able to function as heterodimers with retinoid X receptor type receptors in regulating transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The NR4A1-3 (Nur77, NURR1 and NOR-1) subfamily of nuclear hormone receptors (NRs) has been implicated in Parkinson's disease, schizophrenia, manic depression, atherogenesis, Alzheimer's disease, rheumatoid arthritis, cancer and apoptosis. This has driven investigations into the mechanism of action, and the identification of small molecule regulators, that may provide the platform for pharmaceutical and therapeutic exploitation. Recently, we found that the purine antimetabolite 6-Mercaptopurine (6-MP), which is widely used as an anti-neoplastic and anti-inflammatory drug, modulated the NR4A1-3 subfamily. Interestingly, the agonist-mediated activation did not involve modulation of primary coactivators' (e.g. p300 and SRC-2/GRIP-1) activity and/or recruitment. However, the role of the subsequently recruited coactivators, for example CARM-1 and TRAP220, in 6-MP-mediated activation of the NR4A1-3 subfamily remains obscure. In this study we demonstrate that 6-MP modulates the activity of the coactivator TRAP220 in a dose-dependent manner. Moreover, we demonstrate that TRAP220 potentiates NOR-1-mediated transactivation, and interacts with the NR4A1-3 subgroup in an AF-1-dependent manner in a cellular context. The region of TRAP220 that mediated 6-MP activation and NR4A interaction was delimited to amino acids 1-800, and operates independently of the critical PKC and PKA phosphorylation sites. Interestingly, TRAP220 expression does not increase the relative induction by 6-MP, however the absolute level of NOR-1-mediated trans-activation is increased. This study demonstrates that 6-MP modulates the activity of the NR4A subgroup, and the coactivator TRAP220.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rev-erbbeta is an orphan nuclear receptor that selectively blocks trans-activation mediated by the retinoic acid-related orphan receptor-alpha (RORalpha). RORalpha has been implicated in the regulation of high density lipoprotein cholesterol, lipid homeostasis, and inflammation. Rev-erbbeta and RORalpha are expressed in similar tissues, including skeletal muscle; however, the pathophysiological function of Rev-erbbeta has remained obscure. We hypothesize from the similar expression patterns, target genes, and overlapping cognate sequences of these nuclear receptors that Rev-erbbeta regulates lipid metabolism in skeletal muscle. This lean tissue accounts for > 30% of total body weight and 50% of energy expenditure. Moreover, this metabolically demanding tissue is a primary site of glucose disposal, fatty acid oxidation, and cholesterol efflux. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. We utilize ectopic expression in skeletal muscle cells to understand the regulatory role of Rev-erbbeta in this major mass peripheral tissue. Exogenous expression of a dominant negative version of mouse Rev-erbbeta decreases the expression of many genes involved in fatty acid/lipid absorption (including Cd36, and Fabp-3 and -4). Interestingly, we observed a robust induction (> 15-fold) in mRNA expression of interleukin-6, an exercise-induced myokine that regulates energy expenditure and inflammation. Furthermore, we observed the dramatic repression (> 20- fold) of myostatin mRNA, another myokine that is a negative regulator of muscle hypertrophy and hyperplasia that impacts on body fat accumulation. This study implicates Rev-erbbeta in the control of lipid and energy homoeostasis in skeletal muscle. In conclusion, we speculate that selective modulators of Rev-erbbeta may have therapeutic utility in the treatment of dyslipidemia and regulation of muscle growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orphan nuclear receptors: therapeutic opportunities in skeletal muscle. Am J Physiol Cell Physiol 291: C203-C217, 2006; doi: 10.1152/ajpcell. 00476.2005.-Nuclear hormone receptors (NRs) are ligand-dependent transcription factors that bind DNA and translate physiological signals into gene regulation. The therapeutic utility of NRs is underscored by the diversity of drugs created to manage dysfunctional hormone signaling in the context of reproductive biology, inflammation, dermatology, cancer, and metabolic disease. For example, drugs that target nuclear receptors generate over $10 billion in annual sales. Almost two decades ago, gene products were identified that belonged to the NR superfamily on the basis of DNA and protein sequence identity. However, the endogenous and synthetic small molecules that modulate their action were not known, and they were denoted orphan NRs. Many of the remaining orphan NRs are highly enriched in energy-demanding major mass tissues, including skeletal muscle, brown and white adipose, brain, liver, and kidney. This review focuses on recently adopted and orphan NR function in skeletal muscle, a tissue that accounts for similar to 35% of the total body mass and energy expenditure, and is a major site of fatty acid and glucose utilization. Moreover, this lean tissue is involved in cholesterol efflux and secretes that control energy expenditure and adiposity. Consequently, muscle has a significant role in insulin sensitivity, the blood lipid profile, and energy balance. Accordingly, skeletal muscle plays a considerable role in the progression of dyslipidemia, diabetes, and obesity. These are risk factors for cardiovascular disease, which is the the foremost cause of global mortality (> 16.7 million deaths in 2003). Therefore, it is not surprising that orphan NRs and skeletal muscle are emerging as therapeutic candidates in the battle against dyslipidemia, diabetes, obesity, and cardiovascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Half of the members of the nuclear receptors superfamily are so-called orphan receptors because the identity of their ligand, if any, is unknown. Because of their important biological roles, the study of orphan receptors has attracted much attention recently and has resulted in rapid advances that have helped in the discovery of novel signaling pathways. In this review we present the main features of orphan receptors, discuss the structure of their ligand-binding domains and their biological functions. The paradoxical existence of a pharmacology of orphan receptors, a rapidly growing and innovative field, is highlighted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prostaglandin E2 receptors (EP) were detected by radioligand binding in nuclear fractions isolated from porcine brain and myometrium. Intracellular localization by immunocytofluorescence revealed perinuclear localization of EPs in porcine cerebral microvascular endothelial cells. Nuclear association of EP1 was also found in fibroblast Swiss 3T3 cells stably overexpressing EP1 and in human embryonic kidney 293 (Epstein–Barr virus-encoded nuclear antigen) cells expressing EP1 fused to green fluorescent protein. High-resolution immunostaining of EP1 revealed their presence in the nuclear envelope of isolated (cultured) endothelial cells and in situ in brain (cortex) endothelial cells and neurons. Stimulation of these nuclear receptors modulate nuclear calcium and gene transcription.