995 resultados para NUCLEAR REACTIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In view of recent interest in the Cl37 (ʋ solar’e-)Ar37 reaction cross section, information on some aspects of mass 37 nuclei has been obtained using the K39 (d, ∝) Ar37 and Cl35 (He3, p) Ar37 reactions. Ar37 levels have been found at 0, 1.41, 1.62, 2.22, 2.50, 2.80, 3.17, 3.27, 3.53, 3.61, 3.71, (3.75), (3.90), 3.94, 4.02, (4.21), 4.28, 4.32, 4.40, 4.45, 4.58, 4.63, 4.74, 4.89, 4.98, 5.05, 5.10, 5.13, 5.21, 5.35, 5.41, 5.44, 5.54, 5.58, 5.67, 5.77, and 5.85 MeV (the underlined values correspond to previously tabulated levels). The nuclear temperature calculated from the Ar37 level density is 1.4 MeV. Angular distributions of the lowest six levels with the K39 (d, ∝) Ar37 reaction at Ed = 10 MeV indicate a dominant direct interaction mechanism and the inapplicability of the 2I + 1 rule of the statistical model. Comparison of the spectra obtained with the K39 (d, ∝) Ar37 and Cl35 (He3, p) Ar37 reactions leads to the suggestion that the 5.13-MeV level is the T = 3/2 Cl37 ground state analog. The ground state Q-value of the Ca40 (p, ∝) K37 reaction has been measured: -5179 ± 9 keV. This value implies a K37 mass excess of -24804 ± 10 keV. Description of a NMR magnetometer and a sixteen-detector array used in conjunction with a 61-cm double-focusing magnetic spectrometer are included in appendices.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The University of Notre Dame, USA (Becchetti et al, Nucl. Instrum. Metho ds Res. A505, 377 (2003)) and later the University of Sao Paulo, Brazil (Lichtenthaler et al, Eur. Phys. J. A25, S-01, 733 (2005)) adopted a system based on superconducting solenoids to produce low-energy radioactive nuclear beams. In these systems the solenoids act as thick lenses to collect, select, and focus the secondary beam into a scattering chamb er. Many experiments with radioactive light particle beams (RNB) such as (6)He, (7)Be, (8)Li, (8)B have been performed at these two facilities. These low-energy RNB have been used to investigate low-energy reactions such as elastic scattering, transfer and breakup, providing useful information on the structure of light nuclei near the drip line and on astrophysics. Total reaction cross-sections, derived from elastic scattering analysis, have also been investigated for light system as a function of energy and the role of breakup of weakly bound or exotic nuclei is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reactions 32S+58,64Ni are studied at 14.5 AMeV. From this energy on, fragmentation begins to be a dominant process, although evaporation and fission are still present. After a selection of the collision mechanism, we show that important even-odd effects are present in the isotopic fragment distributions when the excitation energy is small. The staggering effect appears to be a universal feature of fragment production, slightly enhanced when the emission source is neutron poor. A closer look at the behavior of isotopic chains reveals that odd-even effects cannot be explained by pairing effects in the nuclear mass alone, but depend in a more complex way on the de-excitation chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The literature has been searched for references pertaining to high energy reactions of interest to nuclear chemists. Nuclear Science Abstracts was the main source of references and wherever possible the complete abstract was retained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Various nuclear reactions like quasi-fission, fusion-fission or particle and cluster evaporation from excited compound nuclei were studied in heavy-ion reactions at the velocity filter SHIP of GSI. The velocity filter offers the possibility to detect all reaction products under zero degree relative to the beam direction. Together with the measurement of the product velocity distribution this allows for an identification of the underlying reaction mechanism. This article is focussed on reactions of Mg-25 and Ni-64 beams on Pb-206,Pb-207 targets at energies of 5.9 x A MeV and 8.7 x A MeV. Besides evaporation residues from Mg-25 + Pb-206 collisions we found evidence for rotation and quasi-fission of nuclear molecules formed in the entrance channel after the capture stage. The break-up of the systems showed a preferred clustering leading to isotopes in the region 84 <= Z <= 88 and 122 <= N <= 127 of the chart of nuclei.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High power lasers have proven being capable to produce high energy γ-rays, charged particles and neutrons, and to induce all kinds of nuclear reactions. At ELI, the studies with high power lasers will enter for the first time into new domains of power and intensities: 10 PW and 10^23 W/cm^2. While the development of laser based radiation sources is the main focus at the ELI-Beamlines pillar of ELI, at ELI-NP the studies that will benefit from High Power Laser System pulses will focus on Laser Driven Nuclear Physics (this TDR, acronym LDNP, associated to the E1 experimental area), High Field Physics and QED (associated to the E6 area) and fundamental research opened by the unique combination of the two 10 PW laser pulses with a gamma beam provided by the Gamma Beam System (associated to E7 area). The scientific case of the LDNP TDR encompasses studies of laser induced nuclear reactions, aiming for a better understanding of nuclear properties, of nuclear reaction rates in laser-plasmas, as well as on the development of radiation source characterization methods based on nuclear techniques. As an example of proposed studies: the promise of achieving solid-state density bunches of (very) heavy ions accelerated to about 10 MeV/nucleon through the RPA mechanism will be exploited to produce highly astrophysical relevant neutron rich nuclei around the N~126 waiting point, using the sequential fission-fusion scheme, complementary to any other existing or planned method of producing radioactive nuclei.

The studies will be implemented predominantly in the E1 area of ELI-NP. However, many of them can be, in a first stage, performed in the E5 and/or E4 areas, where higher repetition laser pulses are available, while the harsh X-ray and electromagnetic pulse (EMP) environments are less damaging compared to E1.

A number of options are discussed through the document, having an important impact on the budget and needed resources. Depending on the TDR review and subsequent project decisions, they may be taken into account for space reservation, while their detailed design and implementation will be postponed.

The present TDR is the result of contributions from several institutions engaged in nuclear physics and high power laser research. A significant part of the proposed equipment can be designed, and afterwards can be built, only in close collaboration with (or subcontracting to) some of these institutions. A Memorandum of Understanding (MOU) is currently under preparation with each of these key partners as well as with others that are interested to participate in the design or in the future experimental program.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A simple method is presented to evaluate the effects of short-range correlations on the momentum distribution of nucleons in nuclear matter within the framework of the Greens function approach. The method provides a very efficient representation of the single-particle Greens function for a correlated system. The reliability of this method is established by comparing its results to those obtained in more elaborate calculations. The sensitivity of the momentum distribution on the nucleon-nucleon interaction and the nuclear density is studied. The momentum distributions of nucleons in finite nuclei are derived from those in nuclear matter using a local-density approximation. These results are compared to those obtained directly for light nuclei like 16O.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work we present new coupled channel calculations with the Sao Paulo potential (SPP) as the bare interaction, and an imaginary potential with system and energy independent normalization that has been developed to take into account dissipative processes in heavy-ion reactions. This imaginary potential is based on high-energy nucleon interaction in nuclear medium. Our theoretical predictions for energies up to approximate to 100 MeV/nucleon agree very well with the experimental data for the p, n + nucleus, (16)O + (27)Al, (16)O + (60)Ni, (58)Ni + (124)Sn, and weakly bound projectile (7)Li + (120)Sn systems. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The need for a program of work focused on the nuclear data evaluation of chargedparticle reactions has arisen recently due to their increasing use in cancer therapy. This project, as part of that program, has as its main goal the selection and comparison of nuclear data for nuclear reactions induced by protons at low to intermediate energies (E < 250 MeV). The methodology of selection was based on the data base EXFOR and the compilations of radionuclide production cross sections of N. Sobolevsky. For the purpose of comparison and evaluation, theoretical calculations with the reaction model code EMPIRE-II are being used. © 2009 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper aims to give an initial presentation to physics students of the area of electron transfer, addressing its major aspects. The subject is then presented in an introductory way, highlighting and discussing the key points. Primarily, the problem is approached in a simplified manner through a two-state system, and aspects of calculating the matrix-element are discussed. Then, the electron transfer problem, influenced by nuclear reaction coordinates, is addressed and treated by the Marcus theory. Time scales and the concepts of adiabatic and nonadiabatic phenomena are discussed in the context of electron transfer. The classical, semi-classical and quantum formalisms of for the nuclear reactions coordinates are presented, and aspects of solvents are also discussed. Finally, we conclude by examining some recent examples of problems discussed in the literature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nuclear astrophysics is a relatively young science; it is about half a century old. It is a multidisciplinary subject, since it combines nuclear physics with astrophysics and observations in astronomy. It also addresses fundamental issues in astrobiology through the formation of elements, in particular those required for a carbon-based life. In this paper, a rapid overview of nucleosynthesis is given, mainly from the point of view of nuclear physics. A short historical introduction is followed by the definition of the relevant nuclear parameters, such as nuclear reaction cross sections, astrophysical S-factors, the energy range defined by the Gamow peak and reaction rates. The different astrophysical scenarios that are the sites of nucleosynthesis, and different processes, cycles and chains that are responsible for the building of complex nuclei from the elementary hydrogen nuclei are then briefly described. Received 28 February 2012, accepted 5 April 2012, first published online 9 May 2012

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In der vorliegenden Dissertation werden die Kernreaktionen 25Mg(alpha,n)28Si, 26Mg(alpha,n)29Si und 18O(alpha,n)21Ne im astrophysikalisch interessanten Energiebereich von E alpha = 1000 keV bis E alpha = 2450 keV untersucht.rnrnDie Experimente wurden am Nuclear Structure Laboratory der University of Notre Dame (USA) mit dem vor Ort befindlichen Van-de-Graaff Beschleuniger KN durchgeführt. Hierbei wurden Festkörpertargets mit evaporiertem Magnesium oder anodisiertem Sauerstoff mit alpha-Teilchen beschossen und die freigesetzten Neutronen untersucht. Zum Nachweis der freigesetzten Neutronen wurde mit Hilfe von Computersimulationen ein Neutrondetektor basierend auf rn3He-Zählrohren konstruiert. Weiterhin wurden aufgrund des verstärkten Auftretens von Hintergrundreaktionen verschiedene Methoden zur Datenanalyse angewendet.rnrnAbschliessend wird mit Hilfe von Netzwerkrechnungen der Einfluss der Reaktionen 25Mg(alpha,n)28Si, 26Mg(alpha,n)29Si und 18O(alpha,n)21Ne auf die stellare Nukleosynthese untersucht.rn