38 resultados para NQR
Resumo:
Chlorine NQR in 2,6-dichloropyridine has been investigated in the temperature range 77 K to room temperature and a single resonance line has been observed throughout. Using this data, torsional frequencies of the molecule have been evaluated on the basis of both the Bayer theory and the modified Bayer theory incorporating Tatsuzaki correction.
Resumo:
A 35Cl NQR study of 2-chloro-3-pyridinol showed the presence of four NQR signals at 77 K. One of the lines showed a positive temperature coefficient of the NQR frequency. 1H NMR studies showed the presence of intramolecular hydrogen bonding, and the anomalous NQR temperature dependence has been explained in terms of Bayer and hydrogen bond effects. The room temperature x-ray structure and the low-temperature NQR data suggest the presence of a phase transition.
Pressure dependence of 35Cl NQR in hexachloro- (N3P3Cl6) and octachloro- (N4P4Cl8) cyclophosphazenes
Resumo:
High pressure studies of 35Cl NQR in the hexachlorocyclophosphazene N3P3Cl6 and in the K- and T-forms of octachlorocyclophospha.
Resumo:
Temperature dependence of 35Cl nuclear quadrupole resonance (NQR) frequencies has been studied in 3-amino-2-chloropyridine and 2-chloro-5-nitropyridine from 77 to 298 K. The data were analysed and the torsional frequencies regarding internal motions in the molecules evaluated in the above temperature range using Bayer's theory and Brown's method.
Resumo:
35Cl NQR has been investigated in two cyclotriphosphazene derivatives N3P3Cl4Ph2 and N3P3Cl4(NMe2)2. The observed frequencies are assigned to the various chlorines and the temperature variation of the NQR frequencies studied in the range from 77 K to 300 K. The results are analysed using the Bayer-Kushida-Brown approach. Torsional (librational) frequencies are found to fall in the range 10–25 cm−1 and are found to be only slightly temperature dependent.
Resumo:
The frequencies and variable-temperature behaviour of 35Cl nuclear quadrupole resonance in three aminocyclophosphazene derivatives are reported. The observed frequencies and multiplicity are correlated with the disposition of the substituents and the crystal structure. The temperature-dependence data are discussed in the framework of Bayer-Kushida-Brown equations and low-lying torsional (librational) frequencies and their average temperature coefficients are estimated. Brown's parabolic equation provides a good fit to the experimental data. Variable-temperature proton FT-NMR measurements (at 270 MHz) have also been carried out. The results are consistent with the NQR data and indicate the presence of two-site chemical exchange of the -NH protons and hydrogen bonding.
Resumo:
Es wird die Temperaturabhiingigkeit der CI35-Kernquadrupolresonanz in Natriumchlorat und Kupferchlorat im Temperature von 77 bis 300 °K untersucht. Es wird gezeigt, daß die Annahmen, die in der Theorie von Bayer gemacht werden, fur Chlorate gelten. Die Frequenz der Torsionsschwingungen der ClO3-Gruppe wird folglich mit dieser Theorie berechnet. Der berechnete Wert der Torsionsfrequenz stimmt gut mit vorhandenen Werten der Ramanspektroskopie überein.
Resumo:
NQR frequencies in 3,4-dichlorophenol are investigated in the temperature range 77 K to room temperature. Two resonances have been observed throughout the temperature range, corresponding to the two chemically inequivalent chlorine sites. Using Bayer's theory and Brown's method torsional frequencies and their temperature dependence in this range are estimated.
Resumo:
Temperature dependence of chlorine nuclear quadrupole resonance in 2-chloro 5-nitrobenzoic acid and 4-chloro 3-nitrobenzoic acid has been investigated in the region 77° K to room temperature. No phase transition has been observed. The results are analysed to obtain the torsional frequencies and their temperature dependence. A nonlinear temperature dependence is obtained for the torsional frequencies.
Resumo:
Zeeman (35Cl) NQR studies in polycrystalline samples of 4,6-dichloropyrimidine and 6 chloro 2,4 dimethoxypyrimidine show that the asymmetry at the four chemically inequivalent chlorine sites in the former is about 10%, while in the latter (one line) the asymmetry is almost zero. Using a valence-bond picture, C-Cl bonds in 4,6-dichloropyrimidine have been characterised, and the results are also compared with those in a corresponding benzene compound using a simple molecular orbital calculation. The axial symmetry of C-Cl bond in the second compound has been attributed to mesomeric effects.
Resumo:
Various metal salts (Na, K, Rb, and NH4) of monochloro acetic acid were prepared and the Cl-35 nuclear quadrupole resonance frequencies were measured at room temperature. A comparative study of nuclear quadrupole resonance frequencies of monochloro acetic acid and its metal salts is carried out. The frequency shifts obtained in the respective metal chloroacetates are used to estimate the changes in the ionicity of C-Cl bond. Further, the changes in the ionicity of C-Cl bond were used to estimate the percentage of intra-molecular charge transfer between respective cation-anion of the metal salts of chloro acetic acid. The nuclear quadrupole resonance frequency is found to decrease with increasing ionicity of the alkali metal ion.