5 resultados para NPP1
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ink Disease is considered one of the most important causes of the decline of chestnut orchards. The break in yield of Castanea sativa Mill is caused by two species: Phytophthora cinnamomi and Phytophthora cambivora, being the first one the foremost pathogen of ink disease in Portugal. P. cinnamomi is one of the most aggressive and widespread plant pathogen with nearly 1,000 host species. This oomycete causes enormous economic losses and it is responsible for the decline of many plant species in Europe and worldwide. Up to now no efficient treatments are available to fight these pathogens. Because of the importance of chestnut at economical and ecological levels, especially in Portugal, it becomes essential to explore the molecular mechanisms that determine the interaction between Phytophthora species and host plants through the study of proteins GIP (glucanase inhibitor protein) and NPP1 (necrosis-inducing Phytophthora protein 1) produced by P. cinnamomi during the infection. The technique of RNA interference was used to knockdown the gip gene of P. cinnamomi. Transformants obtained with the silenced gene have been used to infect C. sativa, in order to determine the effect of gene silencing on the plant phenotype. To know more about the function of GIP and NPP1 involved in the mechanism of infection, the ORF’s of gip and npp1 genes have been cloned to the pTOR-eGFP vector for a future observation of P. cinnamomi transformants with fluorescent microscopy and determination of the subcellular localization. Moreover the prediction by bioinformatics tools indicates that both GIP and NPP1 proteins are secreted. The results allow to predict the secretory destination of both GIP and NPP1 proteins and confirm RNAi as a potential alternative biological tool in the control and management of P. cinnamomi. Keywords:
Resumo:
We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5`-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5`-monophosphate, and PP(i) by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5`-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PPi were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1- containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PPi by TNAP-, and TNAP plus NPP1- containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
El glaucoma es una de las causas más comunes de discapacidad visual y una de las enfermedades neurodegenerativas oculares más frecuentes de pérdida irreversible de visión. La afectación originada en la retina se caracteriza por la degeneración de las células ganglionares y la pérdida de axones. La presión intraocular es un factor de riesgo importante en el glaucoma, entre otros factores, implicando mecanismos bioquímicos que desencadenan la muerte de las células ganglionares. El ratón DBA/2J es un modelo de hipertensión ocular y de degeneración de las células ganglionares de la retina (CGR). Las características principales de éste son la dispersión del pigmento del iris (IPD) y la atrofia del estroma del iris (ISA) que conducen a la patogénesis del glaucoma. Los mecanismos bioquímicos que comprometen al sistema purinérgico en procesos patológicos como la degeneración glaucomatosa han sido estudiados en los últimos años, siendo de gran relevancia como posibles dianas farmacológicas para el tratamiento de diferentes neuropatías. Los receptores P2X comprenden una familia de siete canales iónicos de membrana activados por ligando (P2X1-7) que se activan por el ATP extracelular (ATPe). En particular, los receptores P2X7 podrían estar involucrados en la regulación de la transmisión sináptica y la muerte neuronal en la retina. Además, la excitotoxicidad mediada por ATP a través de la activación del receptor P2X7 sugiere su posible implicación en la degeneración neuronal y la pérdida de la función visual en las retinas glaucomatosas. Tan importante como la presencia de este receptor purinérgico es estudiar los niveles de ATP extracelular de la retina, así como evaluar los cambios en la expresión del transportador de nucleótidos vesicular (VNUT) y los niveles de ecto-nucleotidasa (E-NPP1) en este modelo murino de glaucoma durante el desarrollo de la enfermedad...