953 resultados para NORMAL MELANOCYTES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information on B-10 distribution in normal tissues is crucial to any further development of boron neutron capture therapy (BNCT). The goal of this study was to investigate the in vitro and in vivo boron biodistribution in B16F10 murine melanoma and normal tissues as a model for human melanoma treatment by a simple and rapid colorimetric method, which was validated by HR-ICP-MS. The B16F10 melanoma cell line showed higher melanin content than human melanocytes, demonstrating a greater potential for boronophenylalanine uptake. The melanocytes showed a moderate viability decrease in the first few minutes after BNCT application, stabilizing after 75 min, whereas the B16F10 melanoma showed the greatest intracellular boron concentration at 150 min after application, indicating a different boron uptake of melanoma cells compared to normal melanocytes. Moreover, at this time, the increase in boron uptake in melanoma cells was approximately 1.6 times higher than that in normal melanocytes. The B-10 concentration in the blood of mice bearing B16F10 melanoma increased until 90 min after BNCT application and then decreased after 120 min, and remained low until the 240th minute. On the other hand, the B-10 concentration in tumors was increased from 90 min and maximal at 150 min after application, thus confirming the in vitro results. Therefore, the present in vitro and in vivo study of B-10 uptake in normal and tumor cells revealed important data that could enable BNCT to be possibly used as a treatment for melanoma, a chemoresistant cancer associated with high mortality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Once melanoma metastasizes, no effective treatment modalities prolong survival in most patients. This notorious refractoriness to therapy challenges investigators to identify agents that overcome melanoma resistance to apoptosis. Whereas many survival pathways contribute to the death-defying phenotype in melanoma, a defect in apoptotic machinery previously highlighted inactivation of Apaf-1, an apoptosome component engaged after mitochondrial damage. During studies involving Notch signaling in melanoma, we observed a gamma-secretase tripeptide inhibitor (GSI; z-Leu-Leu-Nle-CHO), selected from a group of compounds originally used in Alzheimer's disease, induced apoptosis in nine of nine melanoma lines. GSI only induced G2-M growth arrest (but not killing) in five of five normal melanocyte cultures tested. Effective killing of melanoma cells by GSI involved new protein synthesis and a mitochondrial-based pathway mediated by up-regulation of BH3-only members (Bim and NOXA). p53 activation was not necessary for up-regulation of NOXA in melanoma cells. Blocking GSI-induced NOXA using an antisense (but not control) oligonucleotide significantly reduced the apoptotic response. GSI also killed melanoma cell lines with low Apaf-1 levels. We conclude that GSI is highly effective in killing melanoma cells while sparing normal melanocytes. Direct enhancement of BH3-only proteins executes an apoptotic program overcoming resistance of this lethal tumor. Identification of a p53-independent apoptotic pathway in melanoma cells, including cells with low Apaf-1, bypasses an impediment to current cytotoxic therapy and provides new targets for future therapeutic trials involving chemoresistant tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Notch receptor-mediated intracellular events represent an ancient cell signaling system, and alterations in Notch expression are associated with various malignancies in which Notch may function as an oncogene or less commonly as a tumor suppressor. Notch signaling regulates cell fate decisions in the epidermis, including influencing stem cell dynamics and growth/differentiation control of cells in skin. Because of increasing evidence that the Notch signaling network is deregulated in human malignancies, Notch receptors have become attractive targets for selective killing of malignant cells. Compared with proliferating normal human melanocytes, melanoma cell lines are characterized by markedly enhanced levels of activated Notch-1 receptor. By using a small molecule gamma-secretase inhibitor (GSI) consisting of a tripeptide aldehyde, N-benzyloxycarbonyl-Leu-Leu-Nle-CHO, which can block processing and activation of all four different Notch receptors, we identified a specific apoptotic vulnerability in melanoma cells. GSI triggers apoptosis in melanoma cells, but only G2/M growth arrest in melanocytes without subsequent cell death. Moreover, GSI treatment induced a pro-apoptotic BH3-only protein, NOXA, in melanoma cells but not in normal melanocytes. The use of GSI to induce NOXA induction overcomes the apoptotic resistance of melanoma cells, which commonly express numerous cell survival proteins such as Mcl-1, Bcl-2, and survivin. Taken together, these results highlight the concept of synthetic lethality in which exposure to GSI, in combination with melanoma cells overexpressing activated Notch receptors, has lethal consequences, producing selective killing of melanoma cells, while sparing normal melanocytes. By identifying signaling pathways that contribute to the transformation of melanoma cells (e.g. Notch signaling), and anti-cancer agents that achieve tumor selectivity (e.g., GSI-induced NOXA), this experimental approach provides a useful framework for future therapeutic strategies in cutaneous oncology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To identify microRNAs potentially involved in melanomagenesis, we compared microRNA expression profiles between melanoma cell lines and cultured melanocytes. The most differentially expressed microRNA between the normal and tumor cell lines was miR-211. We focused on this pigment-cell-enriched miRNA as it is derived from the microphthalmia-associated transcription factor (MITF)-regulated gene, TRPM1 (melastatin). We find that miR-211 expression is greatly decreased in melanoma cells and melanoblasts compared to melanocytes. Bioinformatic analysis identified a large number of potential targets of miR-211, including POU3F2 (BRN2). Inhibition of miR-211 in normal melanocytes resulted in increased BRN2 protein, indicating that endogenous miR-211 represses BRN2 in differentiated cells. Over-expression of miR-211 in melanoma cell lines changed the invasive potential of the cells in vitro through directly targeting BRN2 translation. We propose a model for the apparent non-overlapping expression levels of BRN2 and MITF in melanoma, mediated by miR-211 expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single nucleotide-polymorphisms (SNPs) are a source of diversity among human population, which may be responsible for the different individual susceptibility to diseases and/or response to drugs, among other phenotypic traits. Several low penetrance susceptibility genes associated with malignant melanoma (MM) have been described, including genes related to pigmentation, DNA damage repair and oxidative stress pathways. In the present work, we conducted a candidate gene association study based on proteins and genes whose expression we had detected altered in melanoma cell lines as compared to normal melanocytes. The result was the selection of 88 loci and 384 SNPs, of which 314 fulfilled our quality criteria for a case-control association study. The SNP rs6854854 in ANXA5 was statistically significant after conservative Bonferroni correction when 464 melanoma patients and 400 controls were analyzed in a discovery Phase I. However, this finding could not be replicated in the validation phase, perhaps because the minor allele frequency of SNP rs6854854 varies depending on the geographical region considered. Additionally, a second SNP (rs6431588) located on ILKAP was found to be associated with melanoma after considering a combined set of 1,883 MM cases and 1,358 disease-free controls. The OR was 1.29 (95% CI 1.12-1.48; p-value= 4x10(-4)). Both SNPs, rs6854854 in ANXA5 and rs6431588 in ILKAP, show population structure, which, assuming that the Spanish population is not significantly structured, suggests a role of these loci on a specific genetic adaptation to different environmental conditions. Furthermore, the biological relevance of these genes in MM is supported by in vitro experiments, which show a decrease in the transcription levels of ANXA5 and ILKAP in melanoma cells compared to normal melanocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Induction of apoptotic cell death in response to chemotherapy and other external stimuli has proved extremely difficult in melanoma, leading to tumor progression, metastasis formation and resistance to therapy. A promising approach for cancer chemotherapy is the inhibition of proteasomal activity, as the half-life of the majority of cellular proteins is under proteasomal control and inhibitors have been shown to induce cell death programs in a wide variety of tumor cell types. 4-Nerolidylcatechol (4-NC) is a potent antioxidant whose cytotoxic potential has already been demonstrated in melanoma tumor cell lines. Furthermore, 4-NC was able to induce the accumulation of ubiquitinated proteins, including classic targets of this process such as Mcl-1. As shown for other proteasomal inhibitors in melanoma, the cytotoxic action of 4-NC is time-dependent upon the pro-apoptotic protein Noxa, which is able to bind and neutralize Mcl-1. We demonstrate the role of 4-NC as a potent inducer of ROS and p53. The use of an artificial skin model containing melanoma also provided evidence that 4-NC prevented melanoma proliferation in a 3D model that more closely resembles normal human skin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Melanoma patients with metastases have a very low survival rate and limited treatment options. Therefore, the targeting of melanoma cells when they begin to invade and metastasize would be beneficial. A specific adhesion molecule that is upregulated at the vertical growth phase is the melanoma cell adhesion molecule (MCAM/MUC18). MUC18 is expressed in late primary and metastatic melanoma with little or no expression on normal melanocytes. MUC18 has been demonstrated to have a role in the progression and metastasis of human melanoma. We utilized the alphavirus-based DNA plasmid, SINCp, encoding full length human MUC18 for vaccination against B16F10 murine melanoma cells expressing human MUC18. The alphavirus-based DNA plasmid leads to the expression of large quantities of heterologous protein as well as danger signals due to dsRNA intermediates produced during viral replication. In a preventative primary tumor model and an experimental tumor model, mice vaccinated against human MUC18 had decreased tumor incidence and reduced lung metastases when challenged with B16F10 murine melanoma cells expressing human MUC18. In a therapeutic tumor model, vaccination against human MUC18 reduced the tumor burden in mice with pre-existing lung metastases but did not have a significant effect on therapeutic vaccination in a primary tumor model. We next cloned murine MUC18 into SINCp for use in determining the efficacy of vaccination against murine MUC18 in a syngeneic animal model. Mice were vaccinated and challenged in a primary tumor and experimental metastasis model. In both models, vaccination significantly reduced tumor incidence and lung metastases. Humoral and cell-mediated responses were then determined. Flow cytometry and immunohistochemistry showed that specific antibodies were developed from vaccination against both human and murine MUC18. IgG2a antibody isotype was also developed indicating a Th1 type response. ELISPOT results showed that mice vaccinated against human MUC18 created a specific T cell response to targets expressing human MUC18. Mice vaccinated against murine MUC18 raised specific effector cells against target cells expressing murine MUC18 in a cell killing assay. These results indicate that vaccination against MUC18 developed specific immune responses against MUC18 and were effective in controlling tumor growth in melanoma expressing MUC18. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human antimelanoma antibody V86 was cloned from a single-chain Fv molecule (scFv) fusion phage library displaying the heavy chain variable domain (VH) and light chain variable domain (VL.) repertoire of a melanoma patient immunized with genetically-modified autologous tumor cells. Previous ELISA tests for binding of the V86 fusion phage to a panel of human metastatic melanoma and carcinoma cell lines and primary cultures of normal melanocytes, endothelial, and fibroblast cells showed that measurable binding occurred only to the melanoma cells. In this communication, the strict specificity of V86 for melanoma cells was confirmed by immunohistochemical staining tests with cultured cells and frozen tissue sections. The V86 fusion phage stained melanoma cell lines but did not stain carcinoma cell lines or cultured normal cells; V86 also stained specifically the melanoma cells in sections of metastatic tissue but did not stain any of the cells in sections from normal skin, lung, and kidney or from metastatic colon and ovarian carcinomas and a benign nevus. An unexpected finding is that V86 contains a complete VH domain but only a short segment of a VL, domain, which terminates before the CDR1 region. This VL deletion resulted from the occurrence in the VL cDNA of a restriction site, which was cleaved during construction of the scFv library. Thus V86 is essentially a VH antibody. The effect of adding a VI. domain to V86 was examined by constructing scFv fusion phage libraries in which V86 was coupled to Vlambda or Vkappa domains from the original scFv library of the melanoma patient and then panning the libraries against melanoma cells to enrich for the highest affinity antibody clones. None of the V86-Vlambda clones showed significant binding to melanoma cells in ELISA tests; although binding occurred with most of the V86-Vkappa clones, it was generally weaker than the binding of V86. These results indicate that most of the VL domains in the original scFv library reduce or eliminate the affinity of V86 for melanoma cells. Accordingly, VH libraries could provide access to anti-tumor antibodies that might not be detected in scFv or Fab libraries because of the incompatibility of most randomly paired VH and VL, domains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fusion phage libraries expressing single-chain Fv antibodies were constructed from the peripheral blood lymphocytes of two melanoma patients who had been immunized with autologous melanoma cells transduced the gamma-interferon gene to enhance immunogenicity, in a trial conducted at another institution. Anti-melanoma antibodies were selected from each library by panning the phage against live cultures of the autologous tumor. After two or three rounds of panning, clones of the phage were tested by ELISA for binding to the autologous tumor cells; > 90% of the clones tested showed a strong ELISA reaction, demonstrating the effectiveness of the panning procedure for selecting antimelanoma antibodies. The panned phage population was extensively absorbed against normal melanocytes to enrich for antibodies that react with melanoma cells but not with melanocytes. The unabsorbed phage were cloned, and the specificities of the expressed antibodies were individually tested by ELISA with a panel of cultured human cells. The first tests were done with normal endothelial and fibroblast cells to identify antibodies that do not react, or react weakly, with two normal cell types, indicating some degree of specificity for melanoma cells. The proportion of phage clones expressing such antibodies was approximately 1%. Those phage were further tested by ELISA with melanocytes, several melanoma lines, and eight other tumor lines, including a glioma line derived from glial cells that share a common lineage with melanocytes. The ELISA tests identified three classes of anti-melanoma antibodies, as follows: (i) a melanoma-specific class that reacts almost exclusively with the melanoma lines; (ii) a tumor-specific class that reacts with melanoma and other tumor lines but does not react with the normal melanocyte, endothelial and fibroblast cells; and (iii) a lineage-specific class that reacts with the melanoma lines, melanocytes, and the glioma line but does not react with the other lines. These are rare classes from the immunized patients' repertoires of anti-melanoma antibodies, most of which are relatively nonspecific anti-self antibodies. The melanoma-specific class was isolated from one patient, and the lineage-specific class was isolated from the other patient, indicating that different patients can have markedly different responses to the same immunization protocol. The procedures described here can be used to screen the antibody repertoire of any person with cancer, providing access to an enormous untapped pool of human monoclonal anti-tumor antibodies with clinical and research potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously showed that growth of the nontumorigenic, immortal murine melanocyte line Mel-ab correlates with the depletion of protein kinase C (PKC), whereas quiescence is associated with elevated levels of this enzyme (Brooks G, et al., Cancer Res 51: 3281–3288, 1991). Here we report responses that occur in these cells downstream of PKC activation or downregulation. We examined induction of 12-O-tetradecanoylphorbol-13-acetate (TPA)-inducible sequence (TIS) gene expression in Mel-ab melanocytes and in their transformed counterparts, B16 melanoma cells. Exposure of quiescent Mel-ab cells to the PKC-activating phorbol esters TPA or sapintoxin A at 81 nM for 2 h increased levels of mRNA for six of seven TIS genes examined (twofold to 80-fold increase in steady-state RNA levels for TIS 1, 7, 8, 11, 21, and 28 (c-fos); TIS 10 expression was not affected). No induction of 115 gene expression was observed either in growing Mel-ab cells maintained in 324 nM phorbol 12,13-dibutyrate or in B16 cells previously unexposed to phorbol esters, in which normal PKC levels were endogenously depressed. The cAMP-elevating agents choleratoxin (10 nM) and dibutyryl cyclic AMP (2.5 mM) increased levels of TIS mRNA (with the exception of TIS 10) in both proliferating Mel-ab and B16 cells, suggesting that downregulation of the PKC pathway is specific and not a consequence of a general inhibition of all signalling pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroblastoma (NB) is characterized by the second highest spontaneous regression of any human malignant disorder, a phenomenon that remains to be elucidated. In this study, a survey of 94 normal human adult sera revealed a considerable natural humoral cytotoxicity against human NB cell lines in approximately one-third of the tested sera of both genders. Specific cell killing by these sera was in the range of 40% to 95%. Serum cytotoxicity was dependent on an intact classical pathway of complement. By several lines of evidence, IgM antibodies were identified as the cytotoxic factor in the sera. Further analyses revealed that a 260-kDa protein was recognized by natural IgM of cytotoxic sera in Western blots of NB cell extracts. The antigen was expressed on the surface of seven human NB cell lines but not on human melanoma or other control tumor cell lines derived from kidney, pancreas, colon, bone, skeletal muscle, lymphatic system, and bone marrow. Furthermore, no reactivity was observed with normal human fibroblasts, melanocytes, and epidermal keratinocytes. The antigen was expressed in vivo as detected by immunohistochemistry in both the tumor of a NB patient and NB tumors established in nude rats from human NB cell lines. Most interestingly, the IgM anti-NB antibody was absent from the sera of 11 human NB patients with active disease. The anti-NB IgM also could not be detected in tumor tissue obtained from a NB patient. Collectively, our data suggest the existence of a natural humoral immunological tumor defense mechanism, which could account for the in vivo phenomenon of spontaneous NB tumor regression.