1000 resultados para NONSELF RECOGNITION


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The family of fibrinogen-related proteins (FREPs) is a group of proteins with fibrinogen-like domains. Many members of this family play important roles as pattern recognition receptors in innate immune responses. The cDNA of bay scallop Argopecten irradians FREP (designated as AiFREP) was cloned by rapid amplification of cDNA ends (RACE) method based on the expressed sequence tag (EST). The full-length cDNA of AiFREP was of 990 bp. The open reading frame encoded a polypeptide of 251 amino acids, including a signal sequence and a 213 amino acids fibrinogen-like domain. The fibrinogen-like domain of AiFREP was highly similar to those of mammalian ficolins and other FREPs. The temporal expression of AiFREP mRNA in hemolymph was examined by fluorescent quantitative real-time PCR. The mRNA level of scallops challenged by Listonella anguillarum was significantly up-regulated, peaked to 9.39-fold at 9 h after stimulation, then dropped back to 4.37-fold at 12 h, while there was no significant change in the Micrococcus luteus challenged group in all periods of treatment. The function of AiFREP was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta gami (DE3). The recombinant AiFREP (rAiFREP) agglutinated chicken erythrocytes and human A, B, O-type erythrocytes. The agglutinating activities were calcium-dependent and could be inhibited by acetyl group-containing carbohydrates. rAiFREP also agglutinated Gram-negative bacteria E. coli JM109, L anguillarum and Gram-positive bacteria M. luteus in the presence of calcium ions. These results collectively suggested that AiFREP functions as a pattern recognition receptor in the immune response of bay scallop and contributed to nonself recognition in invertebrates, which would also provide clues for elucidating the evolution of the lectin pathway of the complement system. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles in the innate immunity. In this study, the gene of a C-type lectin with multiple carbohydrate-recognition domains (CRDs) from scallop Chlamys farreri (designated as Cflec-3) was cloned by rapid amplification of cDNA ends (RACE) approach based on expression sequence tag (EST) analysis. The full-length cDNA of Cflec-3 was of 2256 bp. The open reading frame encoded a polypeptide of 516 amino acids, including a signal sequence and three CRDs. The deduced amino acid sequence of Cflec-3 showed high similarity to members of C-type lectin superfamily. By fluorescent quantitative real-time PCR, the Cflec-3 mRNA was mainly detected in hepatopancreas, adductor, mantle, and marginally in gill, gonad and hemocytes of healthy scallops. After scallops were challenged by Listonella anguillarum, the mRNA level of Cflec-3 in hemocytes was up-regulated and was significantly higher than that of blank at 8 h and 12 h post-challenge. The function of Cflec-3 was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli BL21 (DE3)-pLysS. The recombined Cflec-3 (rCflec-3) agglutinated Gram-negative bacteria Pseudomonas stutzeri. The agglutinating activity was calcium-dependent and could be inhibited by D-mannose. These results collectively suggested that Cflec-3 was involved in the immune response against microbe infection and contributed to nonself-recognition and clearance of bacterial pathogens in scallop. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

C-type lectins are a superfamily of Ca2+ dependent carbohydrate-recognition proteins which play significant diverse roles in nonself-recognition and clearance of invaders. In the present study, a C-type lectin (CfLec-2) from Zhikong scallop Chlamys farreri was selected to investigate its functions in innate immunity. The mRNA expression of CfLec-2 in hemocytes was significantly up-regulated (P < 0.01) after scallops were stimulated by LPS. PGN or beta-glucan, and reached the highest expression level at 12h post-stimulation, which was 72.5-, 23.6- or 43.8-fold compared with blank group, respectively. The recombinant Cflec-2 (designated as rCfLec-2) could bind LPS, PGN, mannan and zymosan in vitro, but it could not bind beta-glucan. Immunofluorescence assay with polyclonal antibody specific for Cflec-2 revealed that CfLec-2 was mainly located in the mantle, kidney and gonad. Furthermore, rCfLec-2 could bind to the surface of scallop hemocytes, and then initiated cellular adhesion and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-2 serum. These results collectively suggested that CfLec-2 from the primitive deuterostome C. farreri could perform two distinct immune functions, pathogen recognition and cellular adhesion synchronously, while these functions were performed by collectins and selectins in vertebrates, respectively. The synchronous functions of pathogen recognition and cellular adhesion performed by CfLec-2 tempted us to suspect that CfLec-2 was an ancient form of C-type lectin, and apparently the differentiation of these two functions mediated by C-type lectins occurred after mollusk in phylogeny. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles as pattern recognition receptors (PRRs) in the innate immunity. In this study, the full-length cDNA of a C-type lectin was cloned from scallop Chlamys farreri (designated as Cflec-5) by expression sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach The full-length cDNA of Cflec-5 was of 1412 bp. The open reading frame encoded a polypeptide of 153 amino acids, including a signal sequence and a conserved carbohydrate-recognition domain with the EPN motif determining the mannose-binding specificity The deduced amino acid sequence of Cflec-5 showed high similarity to members of C-type lectin superfamily. The quantitative real-time PCR was performed to investigate the tissue distribution of Cflec-5 mRNA and its temporal expression profiles in hemocytes post pathogen-associated molecular patterns (PAMPs) stimulation. In healthy scallops, the Cflec-5 mRNA was mainly detected in gill and mantle, and marginally in other tissues The mRNA expression of Cflec-5 could be significantly induced by lipopolysaccharide (LPS) and glucan stimulation and reached the maximum level at 6 h and 12 h, respectively But its expression level did not change significantly during peptidoglycan (PGN) stimulation The function of Cflec-5 was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta Gami (DE3) The recombinant Cflec-5 agglutinated Pichia pastoris in a calcium-independent way The agglutinating activity could be inhibited by D-mannose. LPS and glucan, but not by D-galactose or PGN. These results collectively suggested that Cflec-5 was involved in the innate Immune response of scallops and might contribute to nonself-recognition through its interaction with various PAMPs (C) 2010 Elsevier Ltd All rights reserved

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent research has shown that entrance guards of the stingless bee Tetragonisca angustula make less errors in distinguishing nestmates from non-nestmates than all other bee species studied to date, but how they achieve this is unknown. We performed four experiments to investigate nestmate recognition by entrance guards in T. angustula. We first investigated the effect of colony odours on acceptance. Nestmates that acquired odour from non-nestmate workers were 63% more likely to be rejected while the acceptance rate of non-nestmates treated with nestmate odour increased by only 7%. We further hypothesised that guards standing on the wax entrance tube might use the tube as an odour referent. However, our findings showed that there was no difference in the acceptance of non-nestmates by guards standing on their own colony's entrance tube versus the non-nestmate's entrance tube. Moreover, treatment of bees with nestmate and non-nestmate resin or wax had a negative effect on acceptance rates of up to 65%, regardless of the origin of the wax or resin. The role of resin as a source of recognition cues was further investigated by unidirectionally transferring resin stores between colonies. Acceptance rates of nestmates declined by 37% for hives that donated resin, contrasting with resin donor hives where acceptance of non-nestmates increased by 21%. Overall, our results confirm the accuracy of nestmate recognition in T. angustula and reject the hypothesis that this high level of accuracy is due to the use of the wax entrance tubes as a referent for colony odour. Our findings also suggest that odours directly acquired from resin serve no primary function as nestmate recognition cues. The lack of consistency among colonies plus the complex results of the third and fourth experiments highlight the need for further research on the role of nest materials and cuticular profiles in understanding nestmate recognition in T. angustula.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

C-type lectins are Ca2+ dependent carbohydrate-recognition proteins that play crucial roles in the invertebrate innate immunity, such as nonself recognition, activation of proPO system, antibacterial activity, promotion of phagocytosis and nodule formation. In this study, a novel C-type lectin of bay scallops Argopecten irradians (Ai Lec) was identified using expressed sequence tag (EST) and RACE techniques. The Ai Lec cDNA encoded a polypeptide of 171 amino acids with a putative signal peptide of 21 amino acid residues and a mature protein of 150 amino acids. The deduced amino acid sequence of Ai Lec was highly similar to those of the C-type lectins from other animals and contained a typical carbohydrate-recognition domain (CRD) of 131 residues, which has four conserved disulfide-bonded cysteine residues that define the CRD and two additional cysteine residues at the amino terminus. The expression of Ai Lec transcript was dominantly detected in the hepatopancreas and slightly detected in the haemocytes of normal scallops. 6 h after Vibrio anguillarum-challenge and 8 h after Micrococcus luteus-challenge, the temporal expression of Ai Lec mRNA in hemocytes was increased by 4.4- and 3.6-folds, respectively. The results suggested that Ai Lec was a constitutive and inducible acute-phase protein and might be involved in immune response to Gram-negative and Gram-positive microbial infection in bay scallop A. irradians.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ticks are blood feeding parasites transmitting a wide variety of pathogens to their vertebrate hosts. The vector competence of ticks is tightly linked with their immune system. Despite its importance, our knowledge of tick innate immunity is still inadequate and the limited number of sufficiently characterized immune molecules and cellular reactions are dispersed across numerous tick species. The phagocytosis of microbes by tick hemocytes seems to be coupled with a primitive complement-like system, which possibly involves self/nonself recognition by fibrinogen-related lectins and the action of thioester-containing proteins. Ticks do not seem to possess a pro-phenoloxidase system leading to melanization and also coagulation of tick hemolymph has not been experimentally proven. They are capable of defending themselves against microbial infection with a variety of antimicrobial peptides comprising lysozymes, defensins and molecules not found in other invertebrates. Virtually nothing is known about the signaling cascades involved in the regulation of tick antimicrobial immune responses. Midgut immunity is apparently the decisive factor of tick vector competence. The gut content is a hostile environment for ingested microbes, which is mainly due to the antimicrobial activity of hemoglobin fragments generated by the digestion of the host blood as well as other antimicrobial peptides. Reactive oxygen species possibly also play an important role in the tick-pathogen interaction. The recent release of the Ixodes scapularis genome and the feasibility of RNA interference in ticks promise imminent and substantial progress in tick innate immunity research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insects are useful models for the study of innate immune reactions and development. The distinction between recognition mechanisms preceding the breakdown of apoptotic cells during metamorphosis, and the breakdown of cells in response to infections, is unclear. Hemolin, a Lepidopteran member of the immunoglobulin superfamily, is a candidate molecule in self/nonself recognition. This thesis investigates hemolin function and hemolin gene regulation at a molecular level. We investigated the binding and cell adhesion properties of hemolin from H. cecropia and demonstrated that the proteins could homodimerize in presence of calcium. Moreover, a higher molecular weight membrane form of hemolin was present on hemocytes. These results, taken together with an earlier finding that soluble hemolin inhibits hemocyte adhesion, indicated that the secreted hemolin could modulate hemocyte aggregation in a competitive manner in the blood. In addition, hemolin was expressed in different tissues and at different developmental stages. Since hemolin is expressed both during development and during the immune response, its different regulatory factors must act in concert. We found that the third intron contains an enhancer, through which Dif, C/EBP and HMGI synergistically activate a reporter construct in vitro. We concluded that the enhancer is used during infection, since the κB-site is crucial for an immune response. Interestingly, we also found that the active form of the steroid hormone, ecdysone, induces the hemolin gene transcription in vivo, and in addition, acts synergistically during bacterial infection. Preliminary in vivo results indicate a secondary effect of ecdysone and the importance of hormone receptor elements in the upstream promoter region of hemolin. To explore the use of Drosophila as a genetic tool for understanding hemolin function and regulation, we sought to isolate the functional homologue in this species. A fly cDNA library in yeast was screened using H. cecropia hemolin as bait. The screen was not successful. However, it did lead to the discovery of a Drosophila protein with true binding specificity for hemolin. Subsequent characterization revealed a new, highly conserved gene, which we named yippee. Yippee is distantly related to zinc finger proteins and represents a novel family of proteins present in numerous eukaryotes, including fungi, plants and humans. Notably, when the Drosophila genome sequence was revealed, no hemolin orthologue could be detected. Finally, an extensive Drosophila genome chip analysis was initiated. The goal was to investigate the Drosophila immune response, and, in contrast to earlier studies of artificially injected flies, to examine a set of natural microbes, orally and externally applied. In parallel experiments viruses, bacteria, fungi and parasites were compared to unchallenged controls. We obtained a unique set of genes that were up-regulated in the response to the parasite Octosporea muscadomesticae and to the fungus Beauveria bassiana. We expect both down-regulated and up-regulated genes to serve as a source for the discovery of new effector molecules, in particular those that are active against parasites and fungi.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In filamentous fungi, het loci (for heterokaryon incompatibility) are believed to regulate self/nonself-recognition during vegetative growth. As filamentous fungi grow, hyphal fusion occurs within an individual colony to form a network. Hyphal fusion can occur also between different individuals to form a heterokaryon, in which genetically distinct nuclei occupy a common cytoplasm. However, heterokaryotic cells are viable only if the individuals involved have identical alleles at all het loci. One het locus, het-c, has been characterized at the molecular level in Neurospora crassa and encodes a glycine-rich protein. In an effort to understand the role of this locus in filamentous fungi, we chose to study its evolution by analyzing het-c sequence variability in species within Neurospora and related genera. We determined that the het-c locus was polymorphic in a field population of N. crassa with close to equal frequency of each of the three allelic types. Different species and even genera within the Sordariaceae shared het-c polymorphisms, indicating that these polymorphisms originated in an ancestral species. Finally, an analysis of the het-c specificity region shows a high occurrence of nonsynonymous substitution. The persistence of allelic lineages, the nearly equal allelic distribution within populations, and the high frequency of nonsynonymous substitutions in the het-c specificity region suggest that balancing selection has operated to maintain allelic diversity at het-c. Het-c shares this particular evolutionary characteristic of departing from neutrality with other self/nonself-recognition systems such as major histocompatibility complex loci in mammals and the S (self-incompatibility) locus in angiosperms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

After infection with the digenetic trematode Echinostoma paraensei, hemolymph of the snail Biomphalaria glabrata contains lectins comprised of 65-kDa subunits that precipitate polypeptides secreted by E. paraensei intramolluscan larvae. Comparable activity is lacking in hemolymph of uninfected snails. Three different cDNAs with sequence similarities to peptides derived from the 65-kDa lectins were obtained and unexpectedly found to encode fibrinogen-related proteins (FREPs). These FREPs also contained regions with sequence similarity to Ig superfamily members. B. glabrata has at least five FREP genes, three of which are expressed at increased levels after infection. Elucidation of components of the defense system of B. glabrata is relevant because this snail is an intermediate host for Schistosoma mansoni, the most widely distributed causative agent of human schistosomiasis. These results are novel in suggesting a role for invertebrate FREPs in recognition of parasite-derived molecules and also provide a model for investigating the diversity of molecules functioning in nonself-recognition in an invertebrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the effectiveness of virtual product placement as a marketing tool by examining the relationship between brand recall and recognition and virtual product placement. It also aims to address a gap in the existing academic literature by focusing on the impact of product placement on recall and recognition of new brands. The growing importance of product placement is discussed and a review of previous research on product placement and virtual product placement is provided. The research methodology used to study the recall and recognition effects of virtual product placement are described and key findings presented. Finally, implications are discussed and recommendations for future research provided.

Relevância:

20.00% 20.00%

Publicador: