959 resultados para NONMATCHING IMPLANT
Resumo:
Purpose: This prospective randomized matched-pair controlled trial aimed to evaluate marginal bone levels and soft tissue alterations at implants restored according to the platform-switching concept with a new inward-inclined platform and compare them with external-hexagon implants. Materials and Methods: Traditional external-hexagon (control group) implants and inward-inclined platform implants (test group), all with the same implant body geometry and 13 mm in length, were inserted in a standardized manner in the posterior maxillae of 40 patients. Radiographic bone levels were measured by two independent examiners after 6, 12, and 18 months of prosthetic loading. Buccal soft tissue height was measured at the time of abutment connection and 18 months later. Results: After 18 months of loading, all 80 implants were clinically osseointegrated in the 40 participating patients. Radiographic evaluation showed mean bone losses of 0.5 +/- 0.1 mm (range, 0.3 to 0.7 mm) and 1.6 +/- 0.3 mm (range, 1.1 to 2.2 mm) for test and control implants, respectively. Soft tissue height showed a significant mean decrease of 2.4 mm in the control group, compared to 0.6 mm around the test implants. Conclusions: After 18 months, significantly greater bone loss was observed at implants restored according to the conventional external-hexagon protocol compared to the platform-switching concept. In addition, decreased soft tissue height was associated with the external-hexagon implants versus the platform-switched implants. INT J ORAL MAXILLOFAC IMPLANTS 2012;27:927-934.
Resumo:
PURPOSE To evaluate the biologic width dimensions around implants with nonmatching implant-abutment diameters. MATERIALS AND METHODS Five canines had their mandibular premolars and first molars removed bilaterally and replaced with 12 implants that had nonmatching implant-abutment diameters. On one side, six implants were placed in a submerged surgical approach, and the other side utilized a nonsubmerged approach. Two of the implants on each side were placed either 1 mm above, even with, or 1 mm below the alveolar crest. Two months later, gold crowns were attached, and the dogs were sacrificed 6 months postloading. Block sections were processed for histologic and histomorphometric analyses. RESULTS The bone level, connective tissue length, epithelial dimension, and biologic width were not significantly different when the implants were initially placed in a submerged or nonsubmerged surgical approach. The bone level was significantly different around implants placed 1 mm above the crest compared to implants placed even with or 1 mm below the alveolar crest. The connective tissue dimension was not different for any implant level placement. The epithelial dimension and biologic width were significantly greater for implants placed 1 mm below the alveolar crest compared to implants placed even with or 1 mm above the alveolar crest. For five of six implant placements, connective tissue covered the implant/abutment interface. CONCLUSIONS This study reveals a fundamental change in the biologic response to implants with nonmatching implant-abutment diameters. Unlike implants with matching implant-abutment diameters, the connective tissue extended coronally past the interface (microgap). This morphologic tissue alteration represents a significant change in the biologic reaction to implant-abutment interfaces and suggests that marginal inflammation is eliminated or greatly reduced in these implant designs.
Resumo:
Growth rods are commonly used for the treatment of scoliosis in the immature spine. Many variations have been proposed but breakage of implants is a common problem. Growth rod insertion commonly involves large exposures at initial insertion followed by multiple smaller procedures for lengthening. We present our early experiences using a percutaneous technique of insertion of a new titanium mobile bearing implant (Medtronic Inc). The implant allows some rotatory motion in the middle of the construct thus reducing construct stresses and thus possibly reducing rod breakage risk. Based on this small initial series with 12 months follow-up, percutaneous insertion of growth rods using the new implant is a safe and reliable technique although the infection rate in our sample was of note. This may be related to the titanium wear and inflammation seen in the soft tissues at time of operation and visualised on histology. No implants have required removal due to infection, and all infections were treated with debridement at next lengthening and suppressive antibiotics. Propionibacterium is one of the commonest infections seen with spinal implants and sometimes does not respond to simple antibiotic suppression. The technique allows preservation of the soft tissues until definitive fusion is needed and may lead to a decrease in hospital stay. The implant is low profile and seems to offer advantages over other systems on the market. Further follow up is needed to look at longer term outcomes with this new implant type.
Resumo:
This study directly measured the load acting on the abutment of the osseointegrated implant system of transfemoral amputees during level walking, and studied the variability of the load within and among amputees. Twelve active transfemoral amputees (age: 54±12 years, mass:84.3±16.3 kg, height: 17.8±0.10 m) fitted with an osseointegrated implant for over 1 year participated in the study. The load applied on the abutment was measured during unimpeded, level walking in a straight line using a commercial six-channel transducer mounted between the abutment and the prosthetic knee. The pattern and the magnitude of the three-dimensional forces and moments were revealed. Results showed a low step-to-step variability of each subject, but a high subject-to-subject variability in local extrema of body-weight normalized forces and moments and impulse data. The high subject-to-subject variability suggests that the mechanical design of the implant system should be customized for each individual, or that a fit-all design should take into consideration the highest values of load within a broad range of amputees. It also suggests specific loading regime in rehabilitation training are necessary for a given subject. Thus the loading magnitude and variability demonstrated should be useful in designing an osseointegrated implant system better able to resist mechanical failure and in refining the rehabilitation protocol.
Resumo:
Conventional clinical therapies are unable to resolve osteochondral defects adequately, hence tissue engineering solutions are sought to address the challenge. A biphasic implant which was seeded with Mesenchymal Stem Cells (MSC) and coupled with an electrospun membrane was evaluated as an alternative. This dual phase construct comprised of a Polycaprolactone (PCL) cartilage scaffold and a Polycaprolactone - Tri Calcium Phosphate (PCL - TCP) osseous matrix. Autologous MSC was seeded into the entire implant via fibrin and the construct was inserted into critically sized osteochondral defects located at the medial condyle and patellar groove of pigs. The defect was resurfaced with a PCL - collagen electrospun mesh that served as a substitute for periosteal flap in preventing cell leakage. Controls either without implanted MSC or resurfacing membrane were included. After 6 months, cartilaginous repair was observed with a low occurrence of fibrocartilage at the medial condyle. Osteochondral repair was promoted and host cartilage degeneration was arrested as shown by the superior Glycosaminoglycan (GAG) maintenance. This positive morphological outcome was supported by a higher relative Young's modulus which indicated functional cartilage restoration. Bone in growth and remodeling occurred in all groups with a higher degree of mineralization in the experimental group. Tissue repair was compromised in the absence of the implanted cells or the resurfacing membrane. Moreover healing was inferior at the patellar groove as compared to the medial condyle and this was attributed to the native biomechanical features.
Resumo:
Background: Implant surface micro-roughness and hydrophilicity are known to improve the osteogenic differentiation potential of osteoprogenitor cells. This study was aimed to determine whether topographically and chemically modified titanium implant surfaces stimulate an initial osteogenic response in osteoprogenitor cells, which leads to their improved osteogenesis. ----- ----- Methods: Statistical analysis of microarray gene expression profiling data available from studies (at 72 hours) on sand-blasted, large grit acid etched (SLA) titanium surfaces was performed. Subsequently, human osteoprogenitor cells were cultured on SLActive (hydrophilic SLA), SLA and polished titanium surfaces for 24 hours, 3 days and 7 days. The expression of BMP2, BMP6, BMP2K, SP1, ACVR1, FZD6, WNT5A, PDLIM7, ITGB1, ITGA2, OCN, OPN, ALP and RUNX2 were studied using qPCR. ----- ----- Results: Several functional clusters related to osteogenesis were highlighted when genes showing statistically significant differences (from microarray data at 72 hours) in expression on SLA surface (compared with control surface) were analysed using DAVID (online tool). This indicates that differentiation begins very early in response to modified titanium surfaces. At 24 hours, ACVR1 (BMP pathway), FZD6 (Wnt pathway) and SP1 (TGF-β pathway) were significantly up-regulated in cultures on the SLActive surface compared to the other surfaces. WNT5A and ITGB1 also showed higher expression on the modified surfaces. Gene expression patterns on Day 3 and Day 7 did not reveal any significant differences.----- ----- Conclusion: These results suggest that the initial molecular response of osteoprogenitor cells to modified titanium surfaces may be responsible for an improved osteogenic response via the BMP and Wnt signalling pathways.
Resumo:
Topographically and chemically modified titanium implants are recognized to have improved osteogenic properties; however, the molecular regulation of this process remains unknown. This study aimed to determine the microRNA profile and the potential regulation of osteogenic differentiation following early exposure of osteoprogenitor cells to sand-blasted, large-grit acid-etched (SLA) and hydrophilic SLA (modSLA) surfaces. Firstly, the osteogenic characteristics of the primary osteoprogenitor cells were confirmed using ALP activity and Alizarin Red S staining. The effect of smooth (SMO), SLA and modSLA surfaces on the TGF-β/BMP (BMP2, BMP6, ACVR1) and non-canonical WNT/Ca2+ (WNT5A, FZD6) pathways, as well as the integrins ITGB1 and ITGA2, was determined. It was revealed that the modified titanium surfaces could induce the activation of TGF-β/BMP and non-canonical WNT/Ca2+ signaling genes. The expression pattern of microRNAs (miRNAs) related to cell differentiation was evaluated. Statistical analysis of the differentially regulated miRNAs indicated that 35 and 32 miRNAs were down-regulated on the modSLA and SLA surfaces respectively, when compared with the smooth surface (SMO). Thirty-one miRNAs that were down-regulated were common to both modSLA and SLA. There were 10 miRNAs up-regulated on modSLA and nine on SLA surfaces, amongst which eight were the same as observed on modSLA. TargetScan predictions for the down-regulated miRNAs revealed genes of the TGF-β/BMP and non-canonical Ca2+ pathways as targets. This study demonstrated that modified titanium implant surfaces induce differential regulation of miRNAs, which potentially regulate the TGF-β/BMP and WNT/Ca2+ pathways during osteogenic differentiation on modified titanium implant surfaces.
Resumo:
This article reviews the literature on the outcome of flapless surgery for dental implants in the posterior maxilla. The literature search was carried out in using the keywords: flapless, dental implants and maxilla. A hand search and Medline search were carried out on studies published between 1971 and 2011. The authors included research involving a minimum of 15 dental implants with a followup period of 1 year, an outcome measurement of implant survival, but excluded studies involving multiple simultaneous interventions, and studies with missing data. The Cochrane approach for cohort studies and Oxford Centre for Evidence- Based Medicine were applied. Of the 56 published papers selected, 14 papers on the flapless technique showed high overall implant survival rates. The prospective studies yielded 97.01% (95% CI: 90.72–99.0) while retrospective studies or case series illustrated 95.08% (95% CI: 91.0–97.93) survival. The average of intraoperative complications was 6.55% using the flapless procedure. The limited data obtained showed that flapless surgery in posterior maxilla areas could be a viable and predictable treatment method for implant placement. Flapless surgery tends to be more applicable in this area of the mouth. Further long-term clinical controlled studies are needed.
Resumo:
The Exeter stems vary in length from 90 to 150 mm. The shorter stems generally have lower offsets. The purpose of this study was to determine if length of stem, with fixed offset, affected rotational stability. Mechanical testing was carried out on 10 implant-cement constructs with 2 loading profiles, rising from chair and stair climbing, at different simulated implant lengths using purpose-built apparatus. This paper presents a mechanism for clinically observed rotational stability and explains the mechanical characteristics required for rotational stability in Exeter femoral stems. © 2012.
Resumo:
Total hip arthroplasty (THA) has a proven clinical record for providing pain relief and return of function to patients with disabling arthritis. There are many successful options for femoral implant design and fixation. Cemented, polished, tapered femoral implants have been shown to have excellent results in national joint registries and long-term clinical series. These implants are usually 150mm long at their lateral aspect. Due to their length, these implants cannot always be offered to patients due to variations in femoral anatomy. Polished, tapered implants as short as 95mm exist, however their small proximal geometry (neck offset and body size) limit their use to smaller stature patients. There is a group of patients in which a shorter implant with a maintained proximal body size would be advantageous. There are also potential benefits to a shorter implant in standard patient populations such as reduced bone removal due to reduced reaming, favourable loading of the proximal femur, and the ability to revise into good proximal bone stock if required. These factors potentially make a shorter implant an option for all patient populations. The role of implant length in determining the stability of a cemented, polished, tapered femoral implant is not well defined by the literature. Before changes in implant design can be made, a better understanding of the role of each region in determining performance is required. The aim of the thesis was to describe how implant length affects the stability of a cemented, polished, tapered femoral implant. This has been determined through an extensive body of laboratory testing. The major findings are that for a given proximal body size, a reduction in implant length has no effect on the torsional stability of a polished, tapered design, while a small reduction in axial stability should be expected. These findings are important because the literature suggests that torsional stability is the major determinant of long-term clinical performance of a THA system. Furthermore, a polished, tapered design is known to be forgiving of cement-implant interface micromotion due to the favourable wear characteristics. Together these findings suggest that a shorter polished, tapered implant may be well tolerated. The effect of a change in implant length on the geometric characteristics of polished, tapered design were also determined and applied to the mechanical testing. Importantly, interface area does play a role in stability of the system; however it is the distribution of the interface and not the magnitude of the area that defines stability. Taper angle (at least in the range of angles seen in this work) was shown not to be a determinant of axial or torsional stability. A range of implants were tested, comparing variations in length, neck offset and indication (primary versus cement-in-cement revision). At their manufactured length, the 125mm implants were similar to their longer 150mm counterparts suggesting that they may be similarly well tolerated in the clinical environment. However, the slimmer cement-in-cement revision implant was shown to have a poorer mechanical performance, suggesting their use in higher demand patients may be hazardous. An implant length of 125mm has been shown to be quite stable and the results suggest that a further reduction to 100mm may be tolerated. However, further work is required. A shorter implant with maintained proximal body size would be useful for the group of patients who are unable to access the current standard length implants due to variations in femoral anatomy. Extending the findings further, the similar function with potential benefits of a shorter implant make their application to all patients appealing.
Resumo:
In this study, a treatment plan for a spinal lesion, with all beams transmitted though a titanium vertebral reconstruction implant, was used to investigate the potential effect of a high-density implant on a three-dimensional dose distribution for a radiotherapy treatment. The BEAMnrc/DOSXYZnrc and MCDTK Monte Carlo codes were used to simulate the treatment using both a simplified, recltilinear model and a detailed model incorporating the full complexity of the patient anatomy and treatment plan. The resulting Monte Carlo dose distributions showed that the commercial treatment planning system failed to accurately predict both the depletion of dose downstream of the implant and the increase in scattered dose adjacent to the implant. Overall, the dosimetric effect of the implant was underestimated by the commercial treatment planning system and overestimated by the simplified Monte Carlo model. The value of performing detailed Monte Carlo calculations, using the full patient and treatment geometry, was demonstrated.