981 resultados para NONLINEAR-INTERACTIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the theoretical studies of nonlinear interactions of azimuthal surface waves (ASW) in cylindrical metal waveguides fully filled by a uniform magnetoactive plasma. These surface-type wave perturbations propagate in azimuthal direction across an external magnetic field, which is directed along the waveguide axis. The ASW is a relatively new kind of surface waves and so far the nonlinear effects associated with their propagation are outside the scope of scientific issues. They are characterized by a discrete set of mode numbers values which define the ASW eigenfrequencies. This fact leads to several peculiarities of ASW compared with ordinary surface-type waves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transition waves and interactions between two kinds of instability-vortex shedding and transition wave in the near wake of a circular cylinder in the Reynolds number range 3 000-10 000 are studied by a domain decomposition hybrid numerical method. Based on high resolution power spectral analyses for velocity new results on the Reynolds-number dependence of the transition wave frequency, i.e. f(t)/f(s) similar to Re-0.87 are obtained. The new predictions are in good agreement with the experimental results of Wei and Smith but different from Braza's prediction and some early experimental results f(t)/f(s) similar to Re-0.5 given by Bloor et nl. The multi-interactions between two kinds of vortex are clearly visualized numerically. The strong nonlinear interactions between the two independent frequencies (f(t), f(s)) leading to spectra broadening to form the coupling mf(s) +/- nf(t) are predicted and analyzed numerically, and the characteristics of the transition are described. Longitudinal variations of the transition wave and its coupling are reported. Detailed mechanism of the flow transition in the near wake before occurrence of the three-dimensional evolution is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time series analysis methods have traditionally helped in identifying the role of various forcing mechanisms in influencing climate change. A challenge to understanding decadal and century-scale climate change has been that the linkages between climate changes and potential forcing mechanisms such as solar variability are often uncertain. However, most studies have focused on the role of climate forcing and climate response within a strictly linear framework. Nonlinear time series analysis procedures provide the opportunity to analyze the role of climate forcing and climate responses between different time scales of climate change. An example is provided by the possible nonlinear response of paleo-ENSO-scale climate changes as identified from coral records to forcing by the solar cycle at longer time scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that homodyne measurements can be used to demonstrate violations of Bell's inequality with Gaussian states, when the local rotations used for these types of tests are implemented using nonlinear unitary operations. We reveal that the local structure of the Gaussian state under scrutiny is crucial in the performance of the test. The effects of finite detection efficiency are thoroughly studied and shown to only mildly affect the revelation of Bell violations. We speculate that our approach may be extended to other applications such as entanglement distillation where local operations are necessary elements besides quantum entanglement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear interactions take place in most systems that arise in music acoustics, usually as a result of player-instrument coupling. Several time-stepping methods exist for the numerical simulation of such systems. These methods generally involve the discretization of the Newtonian description of the system. However, it is not always possible to prove the stability of the resulting algorithms, especially when dealing with systems where the underlying force is a non-analytic function of the phase space variables. On the other hand, if the discretization is carried out on the Hamiltonian description of the system, it is possible to prove the stability of the derived numerical schemes. This Hamiltonian approach is applied to a series of test models of single or multiple nonlinear collisions and the energetic properties of the derived schemes are discussed. After establishing that the schemes respect the principle of conservation of energy, a nonlinear single-reed model is formulated and coupled to a digital bore, in order to synthesize clarinet-like sounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the generation of fully inseparable three-mode entangled states of radiation by interlinked nonlinear interactions in chi((2)) media. We show how three-mode entanglement can be used to realize symmetric and asymmetric telecloning machines, which achieve optimal fidelity for coherent states. An experimental implementation involving a single nonlinear crystal in which the two interactions take place simultaneously is suggested. Preliminary experimental results showing the feasibility and the effectiveness of the interaction scheme with a seeded crystal are also presented. (C) 2004 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polynomial models are shown to simulate accurately the quadratic and cubic nonlinear interactions (e.g. higher-order spectra) of time series of voltages measured in Chua's circuit. For circuit parameters resulting in a spiral attractor, bispectra and trispectra of the polynomial model are similar to those from the measured time series, suggesting that the individual interactions between triads and quartets of Fourier components that govern the process dynamics are modeled accurately. For parameters that produce the double-scroll attractor, both measured and modeled time series have small bispectra, but nonzero trispectra, consistent with higher-than-second order nonlinearities dominating the chaos.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Jet noise reduction is an important goal within both commercial and military aviation. Although large-scale numerical simulations are now able to simultaneously compute turbulent jets and their radiated sound, lost-cost, physically-motivated models are needed to guide noise-reduction efforts. A particularly promising modeling approach centers around certain large-scale coherent structures, called wavepackets, that are observed in jets and their radiated sound. The typical approach to modeling wavepackets is to approximate them as linear modal solutions of the Euler or Navier-Stokes equations linearized about the long-time mean of the turbulent flow field. The near-field wavepackets obtained from these models show compelling agreement with those educed from experimental and simulation data for both subsonic and supersonic jets, but the acoustic radiation is severely under-predicted in the subsonic case. This thesis contributes to two aspects of these models. First, two new solution methods are developed that can be used to efficiently compute wavepackets and their acoustic radiation, reducing the computational cost of the model by more than an order of magnitude. The new techniques are spatial integration methods and constitute a well-posed, convergent alternative to the frequently used parabolized stability equations. Using concepts related to well-posed boundary conditions, the methods are formulated for general hyperbolic equations and thus have potential applications in many fields of physics and engineering. Second, the nonlinear and stochastic forcing of wavepackets is investigated with the goal of identifying and characterizing the missing dynamics responsible for the under-prediction of acoustic radiation by linear wavepacket models for subsonic jets. Specifically, we use ensembles of large-eddy-simulation flow and force data along with two data decomposition techniques to educe the actual nonlinear forcing experienced by wavepackets in a Mach 0.9 turbulent jet. Modes with high energy are extracted using proper orthogonal decomposition, while high gain modes are identified using a novel technique called empirical resolvent-mode decomposition. In contrast to the flow and acoustic fields, the forcing field is characterized by a lack of energetic coherent structures. Furthermore, the structures that do exist are largely uncorrelated with the acoustic field. Instead, the forces that most efficiently excite an acoustic response appear to take the form of random turbulent fluctuations, implying that direct feedback from nonlinear interactions amongst wavepackets is not an essential noise source mechanism. This suggests that the essential ingredients of sound generation in high Reynolds number jets are contained within the linearized Navier-Stokes operator rather than in the nonlinear forcing terms, a conclusion that has important implications for jet noise modeling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light-matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light-vapour interactions on a chip. Specifically, we demonstrate light-matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We experimentally demonstrate light-matter interactions on a chip, consisting of a silicon nitride wave-guide integrated with rubidium vapor cladding. The measured absorption spectra provide indications for low light nonlinear interactions. © 2012 OSA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We experimentally demonstrate light-matter interactions on a chip, consisting of a silicon nitride wave-guide integrated with rubidium vapor cladding. The measured absorption spectra provide indications for low light nonlinear interactions. © OSA 2012.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Parametric interactions in nonlinear crystals represent a powerful tool in the optical manipulation of information, both in the classical and the quantum regime. Here, we analyze in detail classical and quantum aspects of three-and five-mode parametric interactions in chi(2) nonlinear crystals. The equations of motion are explicitly derived and then solved within the parametric approximation. We describe several applications, including holography, all-optical gates, generation of entanglement, and telecloning. Experimental results on the photon distributions and correlations of the generated beams are also reported and discussed.