1000 resultados para NONAQUEOUS MEDIA
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica
Resumo:
A simple, fast, and sensitive liquid-liquid extraction method followed by nonaqueous capillary electrophoresis (LLE/NACE) was developed and validated for Simultaneous determination of four antidepressants (fluoxetine, sertraline, citalopram and paroxetine) in human plasma. Several experimental separation conditions using aqueous and nonaqueous media separation were tested by varying the electrolyte pH value (for aqueous medium) and the ionic strength concentration considering the similar mobility of the compounds. High-resolution separation was achieved with a mixture of 1.25 mol L(-1) of phosphoric acid in acetonitrile. The quantification limits of the LLE/CE method varied between 15 and 30 ng mL(-1), with a relative standard deviation (RSD) lower than 10.3%. The method was successfully applied in therapeutic drug monitoring and should be employed in the evaluation of plasma levels in urgent toxicological analysis. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Recently, we demonstrated the possibility to extend the range of capillary electrophoresis (CE) applications to the separation of non-water-soluble synthetic polymers. This work focuses on the control of the electro-osmotic flow (EOF) and on the limitation of the solute adsorption in nonaqueous electrolytes. For these purposes, different strategies were investigated. For the initial, a viscous additive (ethylene glycol or glycerol) was used in the electrolyte in order to decrease the EOF magnitude and, possibly, to compete with solute adsorption. A second strategy was to modify, before separation, the fused-silica capillary wall by the adsorption of poly(ethylene oxide) (PEO) via hydrogen bonding. The influence of the molecular mass of the adsorbed PEO on the EOF magnitude and direction was studied in electrolytes based on methanol/acetonitrile mixtures containing ammonium ions. For PEO molecular masses above 1000 g/mol, reversed (anodic) EOF were reported in accordance with previous results obtained with PEO covalently bonded capillaries. The influence of the nature and the concentration of the background electrolyte cation on the EOF magnitude and direction were also investigated. A third strategy consisted in modifying the capillary wall by the adsorption of a cationic polyelectrolyte layer. Advantageously, this polyelectrolyte layer suppressed the adsorption of the polymer solutes onto the capillary wall. The results obtained in this work confirm the high potential and the versatility of CE for the characterization of ionizable organic polymers in nonaqueous media.
Resumo:
This paper presents the Pseudo phase plane (PPP) method for detecting the existence of a nanofilm on the nitroazobenzene-modified glassy carbon electrode (NAB-GC) system. This modified electrode systems and nitroazobenze-nanofilm were prepared by the electrochemical reduction of diazonium salt of NAB at the glassy carbon electrodes (GCE) in nonaqueous media. The IR spectra of the bare glassy carbon electrodes (GCE), the NAB-GC electrode system and the organic NAB film were recorded. The IR data of the bare GC, NAB-GC and NAB film were categorized into five series consisting of FILM1, GC-NAB1, GC1; FILM2, GC-NAB2, GC2; FILM3, GC-NAB3, GC3 and FILM4, GC-NAB4, GC4 respectively. The PPP approach was applied to each group of the data of unmodified and modified electrode systems with nanofilm. The results provided by PPP method show the existence of the NAB film on the modified GC electrode.
Resumo:
A thermodynamic study involving 7-nitro-1,3,5-triaza adamantane, 1, and its interaction with metal cations in nonaqueous media is first reported. Solubility data of 1 in various solvents were used to derive the standard Gibbs energies of solution, Delta G(s)degrees in these solvents. The effect of solvation in the different media was assessed from the Gibbs energy of transfer taking acetonitrile as a reference solvent. (1)H NMR studies of the interaction of 1 and metal cations were carried out in CD(3)CN and CD(3)OD and the data are reported. Conductance measurements revealed that this ligand forms lead(II) or zinc complexes of 1: 1 stoichiometry in acetonitrile. It also revealed a stoichiometry of two molecules of 1 per mercury(II) and two cadmiu (II) ions per molecule of 1. The addition of silver salt to 1 led to the precipitation of the silver-1 complex which was isolated and characterized by X-ray crystallography. At variance with conductance measurements in solution, in the solid state the X-ray structure show`s a 1:1 stoichiometry in the Hg(II) complex. The themiodynamics of complexation of 1 and these cations provide a quantitative assessment of the selective behavior of this ligand for ions of environmental relevance.
Resumo:
A fast, low-cost, convenient, and especially sensitive voltammetric screening approach for the study of the antioxidant properties of isoquercitrin and pedalitin from Pterogyne nitens is suggested in this work. These flavonoids were investigated for their redox properties using cyclic voltammetry in nonaqueous media using N,N-dimethylformamide and tetrabutylammonium tetrafluorborate as the supporting electrolyte, a glassy carbon working electrode, AglAgCl reference electrode, and Pt bare wire counter electrode. The comparative analysis of the activity of rutin has also been carried out. Moreover, combining HPLC with an electrochemical detector allowed qualitative and quantitative detection of micromolecules (e.g., isoquercitrin and pedalitin) that showed antioxidant activities. These results were then correlated to the inhibition of p-carotene bleaching determined by TLC autographic assay and to structural features of the flavonoids.
Resumo:
Supercritical carbon dioxide is a promising green-chemistry solvent for many enzyme-catalyzed chemical reactions, yet the striking stability of some enzymes in such unconventional environments is not well understood. Here, we investigate the stabilization of the Candida antarctica Lipase B (CALB) in supercritical carbon dioxide-water biphasic systems using molecular dynamics simulations. The preservation of the enzyme structure and optimal activity depend on the presence of small amounts of water in the supercritical dispersing medium. When the protein is at least partially hydrated, water molecules bind to specific sites on the enzyme surface and prevent carbon dioxide from penetrating its catalytic core. Strikingly, water and supercritical carbon dioxide cover the protein surface quite heterogeneously. In the first solvation layer, the hydrophilic residues at the surface of the protein are able to pin down patches of water, whereas carbon dioxide solvates preferentially hydrophobic surface residues. In the outer solvation shells, water molecules tend to cluster predominantly on top of the larger water patches of the first solvation layer instead of spreading evenly around the remainder of the protein surface. For CALB, this exposes the substrate-binding region of the enzyme to carbon dioxide, possibly facilitating diffusion of nonpolar substrates into the catalytic funnel. Therefore, by means of microheterogeneous solvation, enhanced accessibility of hydrophobic substrates to the active site can be achieved, while preserving the functional structure of the enzyme. Our results provide a molecular picture on the nature of the stability of proteins in nonaqueous media.
Resumo:
The equilibrium for formation of the intramolecular hydrogen bond (KHB) in a series of substituted salicylate monoanions was investigated as a function of ΔpKa, the difference between the pKa values of the hydrogen bond donor and acceptor, in both water and dimethyl sulfoxide. The dependence of log KHB upon ΔpKa is linear in both solvents, but is steeper in dimethyl sulfoxide (slope = 0.73) than in water (slope = 0.05). Thus, hydrogen bond strength can undergo substantially larger increases in nonaqueous media than aqueous solutions as the charge density on the donor or acceptor atom increases. These results support a general mechanism for enzymatic catalysis, in which hydrogen bonding to a substrate is strengthened as charge rearranges in going from the ground state to the transition state; the strengthening of the hydrogen bond would be greater in a nonaqueous enzymatic active site than in water, thus providing a rate enhancement for an enzymatic reaction relative to the solution reaction. We suggest that binding energy of an enzyme is used to fix the substrate in the low-dielectric active site, where the strengthening of the hydrogen bond in the course of a reaction is increased.
Resumo:
Interfacial activation-based molecular (bio)-imprinting (IAMI) has been developed to rationally improve the performance of lipolytic enzymes in nonaqueous environments. The strategy combinedly exploits (i) the known dramatic enhancement of the protein conformational rigidity in a water-restricted milieu and (ii) the reported conformational changes associated with the activation of these enzymes at lipid-water interfaces, which basically involves an increased substrate accessibility to the active site and/or an induction of a more competent catalytic machinery. Six model enzymes have been assayed in several model reactions in nonaqueous media. The results, rationalized in light of the present biochemical and structural knowledge, show that the IAMI approach represents a straightforward, versatile method to generate manageable, activated (kinetically trapped) forms of lipolytic enzymes, providing under optimal conditions nonaqueous rate enhancements of up to two orders of magnitude. It is also shown that imprintability of lipolytic enzymes depends not only on the nature of the enzyme but also on the "quality" of the interface used as the template.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry
Resumo:
Protocols for the generation of dendritic cells (DCs) using serum as a supplementation of culture media leads to reactions due to animal proteins and disease transmissions. Several types of serum-free media (SFM), based on good manufacture practices (GMP), have recently been used and seem to be a viable option. The aim of this study was to evaluate the results of the differentiation, maturation, and function of DCs from Acute Myeloid Leukemia patients (AML), generated in SFM and medium supplemented with autologous serum (AS). DCs were analyzed by phenotype characteristics, viability, and functionality. The results showed the possibility of generating viable DCs in all the conditions tested. In patients, the X-VIVO 15 medium was more efficient than the other media tested in the generation of DCs producing IL-12p70 (p=0.05). Moreover, the presence of AS led to a significant increase of IL-10 by DCs as compared with CellGro (p=0.05) and X-Vivo15 (p=0.05) media, both in patients and donors. We concluded that SFM was efficient in the production of DCs for immunotherapy in AML patients. However, the use of AS appears to interfere with the functional capacity of the generated DCs.
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
This study evaluated the effect of surface sealant on the translucency of composite resin immersed in different solutions. The study involved the following materials: Charisma, Fortify and coffee, Coca-Cola®, tea and artificial saliva as solutions. Sixty-four specimens (n = 8) were manufactured and immersed in artificial saliva at 37 ± 1 °C. Samples were immersed in the solutions for three times a day and re-immersed in artificial saliva until the translucency readings. The measurements were carried out at nine times: T1 - 24 hours after specimen preparation, T2 - 24 hours after immersion in the solutions, T3 - 48 hours and T4 to T9 - 7, 14, 21, 30, 60 and 90 days, respectively, after immersion. The translucency values were measured using a JOUAN device. The results were subjected to ANOVA and Tukey's test at 5%. The surface sealant was not able to protect the composite resin against staining, the coffee showed the strongest staining action, followed by tea and regarding immersion time, a significant alteration was noted in the translucency of composite resin after 21 days.
Resumo:
OBJECTIVE: This study evaluated the influence of light sources and immersion media on the color stability of a nanofilled composite resin. MATERIAL AND METHODS: Conventional halogen, high-power-density halogen and high-power-density light-emitting diode (LED) units were used. There were 4 immersion media: coffee, tea, Coke® and artificial saliva. A total of 180 specimens (10 mm x 2 mm) were prepared, immersed in artificial saliva for 24 h at 37±1ºC, and had their initial color measured with a spectrophotometer according to the CIELab system. Then, the specimens were immersed in the 4 media during 60 days. Data from the color change and luminosity were collected and subjected to statistical analysis by the Kruskall-Wallis test (p<0.05). For immersion time, the data were subjected to two-way ANOVA test and Fisher's test (p<0.05). RESULTS: High-power-density LED (ΔE=1.91) promoted similar color stability of the composite resin to that of the tested halogen curing units (Jet Lite 4000 plus - ΔE=2.05; XL 3000 - ΔE=2.28). Coffee (ΔE=8.40; ΔL=-5.21) showed the highest influence on color stability of the studied composite resin. CONCLUSION: There was no significant difference in color stability regardless of the light sources, and coffee was the immersion medium that promoted the highest color changes on the tested composite resin.
Resumo:
Melatonin (MEL) acts as a powerful scavenger of free radicals and direct gonadal responses to melatonin have been reported in the literature. Few studies, however, have evaluated the effect of MEL during in vitro maturation (IVM) on bovine embryos. This study tested the addition of MEL to maturation medium (MM) with no gonadotropins on nuclear maturation and embryo development rates and the incidence of DNA damage in resulting embryos. Cumulus-oocyte complexes were aspirated from abattoir ovaries and cultured in MM (TCM-199 medium supplemented with 10% fetal calf serum - FCS) at 39ºC and 5% CO2 in air. After 24 hours of culture in MM with 0.5 µg mL-1 FSH and 5.0 µg mL-1 LH; 10-9 M MEL) or 10-9 M MEL, 0.5 µg mL-1 FSH and 5.0 µg mL-1 LH, the oocytes were stained with Hoechst 33342 to evaluate nuclear maturation rate. After in vitro fertilization and embryo culture, development rates were evaluated and the blastocysts were assessed for DNA damage by Comet assay. There was no effect of melatonin added to the MM, alone or in combination with gonadotropins, on nuclear maturation, cleavage and blastocyst rates. These rates ranged between 88% to 90%, 85% to 88% and 42% to 46%, respectively. The extent of DNA damage in embryos was also not affected by MEL supplementation during IVM. The addition of 10-9 M MEL to the MM failed to improve nuclear maturation and embryo development rates and the incidence of DNA damage in resulting embryos, but was able to properly substitute for gonadotropins during IVM.