888 resultados para NOD mice


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes mellitus can lead to reproductive disorders that in turn result in weakened fertility brought about by morphofunctional changes in the testes and accessory sex glands. However, doubts persist concerning the basic biology of the secretory epithelial cells and the stroma of the coagulating gland of diabetic mice. Thus, the objective of the present study was to analyze the histological and ultrastructural changes associated with stereology of the coagulating gland of mice with alloxan-induced diabetes, and of spontaneously diabetic mice. Sixteen mice of the C57BL/6J strain, and eight non-obese diabetic (NOD) mice were used. The animals were divided into three groups: 1) control (C), 2) alloxan diabetic (AD), and 3) NOD. Thirty days after the detection of diabetic status in group 2, all of the animals were killed and then perfused with Karnovsky's solution through the left cardiac ventricle. The coagulating gland was then removed and processed for morphometric study by light microscopy and electron microscopy. The results showed thickening of the stroma, atrophy of secretory epithelial cells, and disorganization of the organelles involved in the secretory process in both NOD and alloxan-induced mice. Thus, it may be concluded that the coagulating gland suffered drastic morphological changes, and consequently impaired glandular function, in the presence of diabetes mellitus type I in both NOD and AD mice. (C) 2003 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Altered activity of retinal endothelin-1 (ET-1) and nitric oxide may play a causal role in the hemodynamic and histopathological changes of diabetic retinopathy. This study evaluated the therapeutic potential of long-term selective blockade of the ET-1(A) receptor (ETRA) to prevent the development of retinopathy in a genetic mouse model of nonobese type 1 diabetes (NOD). Mice with NOD that received subcutaneous implantation of insulin pellets and wild-type control mice were treated for 4 months with the selective ETRA antagonist LU208075 (30 mg/kg/day) via drinking water. At the end of the study, blood glucose levels were evaluated, and animals were anesthetized and perfused intracardially with FITC-labeled dextran. Retinas were removed and either fixed in formalin for confocal microscope evaluation of retinal vascular filling or transferred to RNALater for quantitative reverse transcriptase-polymerase chain reaction to evaluate expression of NOS-3, NOS-1, ET-1, ETRA, ETRB, and the angiogenic factor adrenomedullin. Compared with wild-type controls, expression of ET-1, ETRA, ETRB, and adrenomedullin in mice with NOD were markedly upregulated in the retinas of nontreated mice (cycle time values relative to GAPDH [deltaCt], 14.8 vs. 13.7, 18.57 vs. 17.5, 10.76 vs. 9.9, and 11.7 vs. 9.1, respectively). Mean integral fluorescence intensity (MIFI) of retinal vascular filling was reduced from normal values of 24 to 12.5 in nontreated animals. LU208075 treatment normalized the upregulated expression of ET-1 and adrenomedullin, as well as the deficit in MIFI, but did not affect the increased ETRA and ETRB expression or the elevated plasma glucose levels found in nontreated animals. NOS isoform expression was essentially unchanged. ETRA antagonists may provide a novel therapeutic strategy to slow or prevent progression of retinal microvascular damage and proliferation in patients for whom there is clear evidence of activation of the ET-1 system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Infections with helminth parasites prevent/attenuate auto-inflammatory disease. Here we show that molecules secreted by a helminth parasite could prevent Type 1 Diabetes (T1D) in nonobese diabetic (NOD) mice. When delivered at 4 weeks of age (coincident with the initiation of autoimmunity), the excretory/secretory products of Fasciola hepatica (FhES) prevented the onset of T1D, with 84% of mice remaining normoglycaemic and insulitis-free at 30 weeks of age. Disease protection was associated with suppression of IFN-γ secretion from autoreactive T cells and a switch to the production of a regulatory isotype (from IgG2a to IgG1) of autoantibody. Following FhES injection, peritoneal macrophages converted to a regulatory M2 phenotype, characterised by increased expression levels of Ym1, Arg-1, TGFβ and PD-L1. Expression of these M2 genetic markers increased in the pancreatic lymph nodes and the pancreas of FhES-treated mice. In vitro, FhES-stimulated M2 macrophages induced the differentiation of Tregs from splenocytes isolated from naïve NOD mice. Collectively, our data shows that FhES contains immune-modulatory molecules that mediate protection from autoimmune diabetes via the induction and maintenance of a regulatory immune environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have described previously the prophylactic and therapeutic effect of a DNA vaccine encoding the Mycobacterium leprae 65 kDa heat shock protein (DNA-HSP65) in experimental murine tuberculosis. However, the high homology of this protein to the corresponding mammalian 60 kDa heat shock protein (Hsp60), together with the CpG motifs in the plasmid vector, could trigger or exacerbate the development of autoimmune diseases. The non-obese diabetic (NOD) mouse develops insulin-dependent diabetes mellitus (IDDM) spontaneously as a consequence of an autoimmune process that leads to destruction of the insulin-producing beta cells of the pancreas. IDDM is characterized by increased T helper 1 (Th1) cell responses toward several autoantigens, including Hsp60, glutamic acid decarboxylase and insulin. In the present study, we evaluated the potential of DNA-HSP65 injection to modulate diabetes in NOD mice. Our results show that DNA-HSP65 or DNA empty vector had no diabetogenic effect and actually protected NOD mice against the development of severe diabetes. However, this effect was more pronounced in DNA-HSP65-injected mice. The protective effect of DNA-HSP65 injection was associated with a clear shift in the cellular infiltration pattern in the pancreas. This change included reduction of CD4(+) and CD8(+) T cells infiltration, appearance of CD25(+) cells influx and an increased staining for interleukin (IL)-10 in the islets. These results show that DNA-HSP65 can protect NOD mice against diabetes and can therefore be considered in the development of new immunotherapeutic strategies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Type I diabetes is a disease caused by autoimmune destruction of the beta cells in the pancreas that leads to a deficiency in insulin production. The aim of this study was to evaluate the prophylactic potential of a prime-boost strategy involving bacille Calmette-Guérin (BCG) and the pVAXhsp65 vaccine (BCG/DNAhsp65) in diabetes induced by streptozotocin (STZ) in C57BL/6 mice and also in spontaneous type 1 diabetes in non-obese diabetic (NOD) mice. BCG/DNAhsp65 vaccination in NOD mice determined weight gain, protection against hyperglycaemia, decreased islet inflammation, higher levels of cytokine production by the spleen and a reduced number of regulatory T cells in the spleen compared with non-immunized NOD mice. In the STZ model, however, there was no significant difference in the clinical parameters. Although this vaccination strategy did not protect mice in the STZ model, it was very effective in NOD mice. This is the first report demonstrating that a prime-boost strategy could be explored as an immunomodulatory procedure in autoimmune diseases. © 2013 British Society for Immunology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Type 1 diabetes is an immuno-inflammatory condition which increases the risk of cardiovascular disease, particularly in young adults. This study investigated whether vascular function is altered in mice prone to autoimmune diabetes and whether the nitric oxide (NO)-cyclic GMP axis is involved. Aortic rings suspended in organ chambers and precontracted with phenylephrine were exposed to cumulative concentrations of acetylcholine. To investigate the role of NO, some experiments were performed in the presence of either 1400W (N-(3-aminomethyl)benzyl-acetamidine hydrochloride), a selective inhibitor of the iNOS-isoform, L-NAME (N(G)-nitro-L-arginine methyl ester hydrochloride), an inhibitor of all three NOS-isoforms, or ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), a selective inhibitor of guanylate cyclase. Moreover, contractility to phenylephrine, big endothelin-1, and endothelin-1 was assessed and histological analysis and iNOS immunohistochemistry were performed. Endothelium-dependent relaxation was reduced in prediabetic NOD mice (78+/-4 vs. 88+/-2%, respectively, P<0.05 vs. control) despite normal plasma glucose levels (n.s. vs. control). Preincubation with 1400W further attenuated responses in prediabetic (P<0.05 vs. untreated) but not in diabetic or in control mice. In contrast, basal NO bioactivity remained unaffected until the onset of diabetes in NOD mice. Contractile responses to big endothelin-1 and endothelin-1 were reduced in prediabetic animals (P<0.05 vs. control), whereas in diabetic mice only responses to big endothelin-1 were decreased (P<0.05 vs. control). These data demonstrate that endothelium-dependent and -independent vascular function in NOD mice is abnormal already in prediabetes in the absence of structural injury. Early proinflammatory activation due to iNOS in diabetes-prone NOD mice appears to be one of the mechanisms contributing to impaired vasoreactivity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The NOD (nonobese diabetic) mouse has been studied as an animal model for autoimmune insulin-dependent diabetes and Sjögren’s syndrome. NOD.Igμnull mice, which lack functional B lymphocytes, develop progressive histopathologic lesions of the submandibular and lachrymal glands similar to NOD mice, but in the absence of autoimmune insulitis and diabetes. Despite the focal appearance of T cells in salivary and lachrymal tissues, NOD.Igμnull mice fail to lose secretory function as determined by stimulation of the muscarinic/cholinergic receptor by the agonist pilocarpine, suggesting a role for B cell autoantibodies in mediating exocrine dryness. Infusion of purified serum IgG or F(ab′)2 fragments from parental NOD mice or human primary Sjögren’s syndrome patients, but not serum IgG from healthy controls, alters stimulated saliva production, an observation consistent with antibody binding to neural receptors. Furthermore, human patient IgG fractions competitively inhibited the binding of the muscarinic receptor agonist, [3H]quinuclidinyl benzilate, to salivary gland membranes. This autoantibody activity is lost after preadsorption with intact salivary cells. These findings indicate that autoantibodies play an important part in the functional impairment of secretory processes seen in connection with the autoimmune exocrinopathy of Sjögren’s syndrome.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nonobese diabetic (NOD) mice develop insulin-dependent diabetes mellitus due to autoimmune T lymphocyte-mediated destruction of pancreatic β cells. Although both major histocompatibility complex class I-restricted CD8+ and class II-restricted CD4+ T cell subsets are required, the specific role each subset plays in the pathogenic process is still unclear. Here we show that class I-dependent T cells are required for all but the terminal stages of autoimmune diabetes development. To characterize the diabetogenic CD8+ T cells responsible, we isolated and propagated in vitro CD8+ T cells from the earliest insulitic lesions of NOD mice. They were cytotoxic to NOD islet cells, restricted to H-2Kd, and showed a diverse T cell receptor β chain repertoire. In contrast, their α chain repertoire was more restricted, with a recurrent amino acid sequence motif in the complementarity-determining region 3 loop and a prevalence of Vα17 family members frequently joined to the Jα42 gene segment. These results suggest that a number of the CD8+ T cells participating in the initial phase of autoimmune β cell destruction recognize a common structural component of Kd/peptide complexes on pancreatic β cells, possibly a single peptide.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With the development of an insulin autoantibody (IAA) assay performed in 96-well filtration plates, we have evaluated prospectively the development of IAA in NOD mice (from 4 weeks of age) and children (from 7 to 10 months of age) at genetic risk for the development of type 1 diabetes. NOD mice had heterogeneous expression of IAA despite being inbred. IAA reached a peak between 8 and 16 weeks and then declined. IAA expression by NOD mice at 8 weeks of age was strongly associated with early development of diabetes, which occurred at 16–18 weeks of age (NOD mice IAA+ at 8 weeks: 83% (5/6) diabetic by 18 weeks versus 11% (1/9) of IAA negative at 8 weeks; P < .01). In man, IAA was frequently present as early as 9 months of age, the first sampling time. Of five children found to have persistent IAA before 1 year of age, four have progressed to diabetes (all before 3.5 years of age) and the fifth is currently less than age 2. Of the 929 children not expressing persistent IAA before age 1, only one has progressed to diabetes to date (age onset 3), and this child expressed IAA at his second visit (age 1.1). In new onset patients, the highest levels of IAA correlated with an earlier age of diabetes onset. Our data suggest that the program for developing diabetes of NOD mice and humans is relatively “fixed” early in life and, for NOD mice, a high risk of early development of diabetes is often determined by 8 weeks of age. With such early determination of high risk of progression to diabetes, immunologic therapies in humans may need to be tested in children before the development of IAA for maximal efficacy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Quantitative and qualitative defects in CD1-restricted natural killer T cells have been reported in several autoimmune-prone strains of mice, including the nonobese diabetic (NOD) mouse. These defects are believed to be associated with the emergence of spontaneous autoimmunity. Here we demonstrate that both CD1d-null NOD and CD1d-null NOD/BDC2.5 T cell receptor transgenic mice have an accelerated onset and increased incidence of diabetes when compared with CD1d+/− and CD1d+/+ littermates. The acceleration of disease did not seem to result from changes in the T helper (Th)1/Th2 balance because lymphocytes purified from lymphoid organs and pancreatic islets of wild-type and CD1d-null mice secreted equivalent amounts of IFN-γ and IL-4 after stimulation. In contrast, the pancreata of CD1d-null mice harbored significantly higher numbers of activated memory T cells expressing the chemokine receptor CCR4. Notably, the presence of these T cells was associated with immunohistochemical evidence of increased destructive insulitis. Thus, CD1d-restricted T cells are critically important for regulation of the spontaneous disease process in NOD mice.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The observation that overt type I diabetes is often preceded by the appearance of insulin autoantibodies and the reports that prophylactic administration of insulin to biobreeding diabetes-prone (BB-DP) rats, nonobese diabetic (NOD) mice, and human subjects results in protection from diabetes suggest that an immune response to insulin is involved in the process of beta cell destruction. We have recently reported that islet-infiltrating cells isolated from NOD mice are enriched for insulin-specific T cells, that insulin-specific T cell clones are capable of adoptive transfer of diabetes, and that epitopes present on residues 9-23 of the B chain appear to be dominant in this spontaneous response. In the experiments described in this report, the epitope specificity of 312 independently isolated insulin-specific T cell clones was determined and B-(9-23) was found to be dominant, with 93% of the clones exhibiting specificity toward this peptide and the remainder to an epitope on residues 7-21 of the A chain. On the basis of these observations, the effect of either subcutaneous or intranasal administration of B-(9-23) on the incidence of diabetes in NOD mice was determined. The results presented here indicate that both subcutaneous and intranasal administration of B-(9-23) resulted in a marked delay in the onset and a decrease in the incidence of diabetes relative to mice given the control peptide, tetanus toxin-(830-843). This protective effect is associated with reduced T-cell proliferative response to B-(9-23) in B-(9-23)-treated mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The graft-versus-myeloma (GVM) effect represents a powerful form of immune attack exerted by alloreactive T cells against multiple myeloma cells, which leads to clinical responses in multiple myeloma transplant recipients. Whether myeloma cells are themselves able to induce alloreactive T cells capable of the GVM effect is not defined. Using adoptive transfer of T naive cells into myeloma-bearing mice (established by transplantation of human RPMI8226-TGL myeloma cells into CD122(+) cell-depleted NOD/SCID hosts), we found that myeloma cells induced alloreactive T cells that suppressed myeloma growth and prolonged survival of T cell recipients. Myeloma-induced alloreactive T cells arising in the myeloma-infiltrated bones exerted cytotoxic activity against resident myeloma cells, but limited activity against control myeloma cells obtained from myeloma-bearing mice that did not receive T naive cells. These myeloma-induced alloreactive T cells were derived through multiple CD8(+) T cell divisions and enriched in double-positive (DP) T cells coexpressing the CD8alphaalpha and CD4 coreceptors. MHC class I expression on myeloma cells and contact with T cells were required for CD8(+) T cell divisions and DP-T cell development. DP-T cells present in myeloma-infiltrated bones contained a higher proportion of cells expressing cytotoxic mediators IFN-gamma and/or perforin compared with single-positive CD8(+) T cells, acquired the capacity to degranulate as measured by CD107 expression, and contributed to an elevated perforin level seen in the myeloma-infiltrated bones. These observations suggest that myeloma-induced alloreactive T cells arising in myeloma-infiltrated bones are enriched with DP-T cells equipped with cytotoxic effector functions that are likely to be involved in the GVM effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previously published reports indicate that serum copper levels are elevated in patients with prostate cancer and that increased copper uptake can be used as a means to image prostate tumors. It is unclear, however, to what extent copper is required for prostate cancer cell function as we observed only modest effects of chelation strategies on the growth of these cells in vitro. With the goal of exploiting prostate cancer cell proclivity for copper uptake, we developed a "conditional lethal" screen to identify compounds whose cytotoxic actions were manifested in a copper-dependent manner. Emerging from this screen was a series of dithiocarbamates, which, when complexed with copper, induced reactive oxygen species-dependent apoptosis of malignant, but not normal, prostate cells. One of the dithiocarbamates identified, disulfiram (DSF), is an FDA-approved drug that has previously yielded disappointing results in clinical trials in patients with recurrent prostate cancer. Similarly, in our studies, DSF alone had a minimal effect on the growth of prostate cancer tumors when propagated as xenografts. However, when DSF was coadministered with copper, a very dramatic inhibition of tumor growth in models of hormone-sensitive and of castrate-resistant disease was observed. Furthermore, we determined that prostate cancer cells express high levels of CTR1, the primary copper transporter, and additional chaperones that are required to maintain intracellular copper homeostasis. The expression levels of most of these proteins are increased further upon treatment of androgen receptor (AR)-positive prostate cancer cell lines with androgens. Not surprisingly, robust CTR1-dependent uptake of copper into prostate cancer cells was observed, an activity that was accentuated by activation of AR. Given these data linking AR to intracellular copper uptake, we believe that dithiocarbamate/copper complexes are likely to be effective for the treatment of patients with prostate cancer whose disease is resistant to classical androgen ablation therapies.