998 resultados para NOD MICE
Resumo:
Leaves of Passiflora alata Curtis were characterized for their antioxidant capacity. Antioxidant analyses of DPPH, FRAP, ABTS, ORAC and phenolic compounds were made in three different extracts: aqueous, methanol/acetone and ethanol. Aqueous extract was found to be the best solvent for recovery of phenolic compounds and antioxidant activity, when compared with methanol/acetone and ethanol. To study the anti-inflammatory properties of this extract in experimental type 1 diabetes, NOD mice were divided into two groups: the P. alata group, treated with aqueous extract of P. alata Curtis, and a non-treated control group, followed by diabetes expression analysis. The consumption of aqueous extract and water ad libitum lasted 28 weeks. The treated-group presented a decrease in diabetes incidence, a low quantity of infiltrative cells in pancreatic islets and increased glutathione in the kidney and liver (p<0.05), when compared with the diabetic and non-diabetic control-groups. In conclusion, our results suggest that the consumption of aqueous extract of P. alata may be considered a good source of natural antioxidants and compounds found in its composition can act as anti-inflammatory agents, helping in the control of diabetes.
Resumo:
The non-obese diabetic (NOD) mouse is a unique and invaluable model of autoimmune disease, in particular type I diabetes. Bone marrow transplantation as a therapy for type I diabetes has been explored in NOD mice. NOD mice require higher doses of conditioning irradiation for successful allogeneic bone marrow transplantation, suggesting that NOD hematopoietic cells are radioresistant compared to those of other mouse strains. However, studies of hematopoietic reconstitution in NOD mice are hampered by the lack of mice bearing a suitable cell-surface marker that would allow transferred cells or their progeny to be distinguished. In order to monitor hematopoietic reconstitution in NOD mice we generated congenic NOD mice that carry the alternative allelic form of the pan-leukocyte alloantigen CD45. Following irradiation and congenic bone marrow transplantation, we found that the myeloid lineage was rapidly reconstituted by cells of donor origin but substantial numbers of recipient T lymphocytes persisted even after supra-lethal irradiation. This indicates that radiation resistance in the NOD hematopoietic compartment is a property primarily of mature T lymphocytes. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A dendritic cell (DC) imbalance with a marked deficiency in CD4(-)8(+) DC occurs in non-obese diabetic (NOD) mice, a model of human autoimmune diabetes mellitus. Using a NOD congenic mouse strain, we find that this CD4(-)8(+) DC deficiency is associated with a gene segment on chromosome 4, which also encompasses non-MHC diabetes susceptibility loci. Treatment of NOD mice with fms-like tyrosine kinase 3 ligand (FL) enhances the level of CD4(-)8(+) DC, temporarily reversing the DC subtype imbalance. At the same time, fms-like tryosine kinase 3 ligand treatment blocks early stages of the diabetogenic process and with appropriately timed administration can completely prevent diabetes development. This points to a possible clinical use of FL to prevent autoimmune disease.
Resumo:
Gene expression of peripheral tissue antigens (PTAs) in stromal medullary thymic epithelial cells (mTECs) is a key process to the negative selection of autoreactive thymocytes. This phenomenon was termed ""promiscuous gene expression"" (PGE), which is partially controlled by the Aire gene. Nevertheless, reasons for the correlation of Aire and PTAs with the emergence of autoimmune diseases are largely unknown, though it may be a result of a chronological effect. Although the effect of Aire mutations in pathogenic autoimmunity is well know, it could not be a unique cause for autoimmunity. Independently of mutations, temporal deregulation of Aire expression may imbalance Aire-dependent PTAs and/or wide PGE. This deregulation may be an early warning sign for autoimmune diseases as it guarantees autoantigen representation in the thymus. To assess this hypothesis, we studied the expression levels of Aire, Aire-dependent (Ins2) and Aire-independent (Gad67 and Col2a1) PTAs using real-time-PCR of the thymic stromal cells of NOD mice during the development of autoimmune type 1 diabetes mellitus (DM-1). Wide PGE was studied by microarrays in which the PTA genes were identified through parallel CD80(+) mTEC 3.10 cell line expression profiling. The results show that Aire gene was down-regulated in young pre-autoimmune (pre-diabetic) NOD mice. PGE and specific PTA genes were down-regulated in adult autoimmune diabetic animals. These findings represent evidence indicating that chronological deregulation of genes important to negative selection may be associated with the development of an autoimmune disease (DM-1) in mice.
Resumo:
The caspase-3-generated RasGAP N-terminal fragment (fragment N) inhibits apoptosis in a Ras-PI3K-Akt-dependent manner. Fragment N protects various cell types, including insulin-secreting cells, against different types of stresses. Whether fragment N exerts a protective role during the development of type 1 diabetes is however not known. Non-obese diabetic (NOD) mice represent a well-known model for spontaneous development of type 1 diabetes that shares similarities with the diseases encountered in humans. To assess the role of fragment N in type 1 diabetes development, a transgene encoding fragment N under the control of the rat insulin promoter (RIP) was back-crossed into the NOD background creating the NOD-RIPN strain. Despite a mosaic expression of fragment N in the beta cell population of NOD-RIPN mice, islets isolated from these mice were more resistant to apoptosis than control NOD islets. Islet lymphocytic infiltration and occurrence of a mild increase in glycemia developed with the same kinetics in both strains. However, the period of time separating the mild increase in glycemia and overt diabetes was significantly longer in NOD-RIPN mice compared to the control NOD mice. There was also a significant decrease in the number of apoptotic beta cells in situ at 16 weeks of age in the NOD-RIPN mice. Fragment N exerts therefore a protective effect on beta cells within the pro-diabetogenic NOD background and this prevents a fast progression from mild to overt diabetes.
Resumo:
AIMS/HYPOTHESIS: betaTC-tet (H2(k)) is a conditional insulinoma cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Transgenic expression of several proteins implicated in the apoptotic pathways increase the resistance of betaTC-tet cells in vitro. We tested in vivo the sensitivity of the cells to rejection and the protective effect of genetic alterations in NOD mice. METHODS: betaTC-tet cells and genetically engineered lines expressing Bcl-2 (CDM3D), a dominant negative mutant of MyD88 or SOCS-1 were transplanted in diabetic female NOD mice or in male NOD mice with diabetes induced by high-dose streptozotocin. Survival of functional cell grafts in NOD-scid mice was also analyzed after transfer of splenocytes from diabetic NOD mice. Autoreactive T-cell hybridomas and splenocytes from diabetic NOD mice were stimulated by betaTC-tet cells. RESULTS: betaTC-tet cells and genetically engineered cell lines were all similarly rejected in diabetic NOD mice and in NOD-scid mice after splenocyte transfer. In 3- to 6-week-old male NOD mice treated with high-dose streptozotocin, the cells temporarily survived, in contrast with C57BL/6 mice treated with high-dose streptozotocin (indefinite survival) and untreated 3- to 6-week-old male NOD mice (rejection). The protective effect of high-dose streptozotocin was lost in older male NOD mice. betaTC-tet cells did not stimulate autoreactive T-cell hybridomas, but induced IL-2 secretion by splenocytes from diabetic NOD mice. CONCLUSION/INTERPRETATION: The autoimmune process seems to play an important role in the destruction of betaTC-tet cells in NOD mice. Genetic manipulations intended at increasing the resistance of beta cells were inefficient. Similar approaches should be tested in vivo as well as in vitro. High dose streptozotocin influences immune rejection and should be used with caution.
Resumo:
During the initial phases of type 1 diabetes, pancreatic islets are invaded by immune cells, exposing β-cells to proinflammatory cytokines. This unfavorable environment results in gene expression modifications leading to loss of β-cell functions. To study the contribution of microRNAs (miRNAs) in this process, we used microarray analysis to search for changes in miRNA expression in prediabetic NOD mice islets. We found that the levels of miR-29a/b/c increased in islets of NOD mice during the phases preceding diabetes manifestation and in isolated mouse and human islets exposed to proinflammatory cytokines. Overexpression of miR-29a/b/c in MIN6 and dissociated islet cells led to impairment in glucose-induced insulin secretion. Defective insulin release was associated with diminished expression of the transcription factor Onecut2, and a consequent rise of granuphilin, an inhibitor of β-cell exocytosis. Overexpression of miR-29a/b/c also promoted apoptosis by decreasing the level of the antiapoptotic protein Mcl1. Indeed, a decoy molecule selectively masking the miR-29 binding site on Mcl1 mRNA protected insulin-secreting cells from apoptosis triggered by miR-29 or cytokines. Taken together, our findings suggest that changes in the level of miR-29 family members contribute to cytokine-mediated β-cell dysfunction occurring during the initial phases of type 1 diabetes.
Resumo:
The non-obese diabetic (NOD) mouse is a model for the study of insulin-dependent diabetes mellitus (IDDM). Recently transgenic NOD mice have been derived (NOD-E) that express the major histocompatibility complex (MHC) class II I-E molecule. NOD-E do not become diabetic and show negligible pancreatic insulitis. The possibility pertained that NOD-E mice are protected from disease by a process of T-cell deletion or anergy. This paper describes our attempts to discover whether this was so, by comparing NOD and NOD-E mouse T-cell receptor V beta usage. Splenocytes and lymph node cells were therefore tested for their ability to proliferate in response to monoclonal anti-V beta antibodies. We were unable to show any consistent differences between NOD and NOD-E responses to the panel of antibodies used. Previously proposed V beta were shown to be unlikely candidates for deletion or anergy. T cells present at low frequency (V beta 5+) in both NOD and NOD-E mice were shown to be as capable of expansion in response to antigenic stimulation as were more frequently expressed V beta. Our data therefore do not support deletion or anergy as mechanisms which could account for the observed disease protection in NOD-E mice.
Resumo:
AIMS/HYPOTHESIS: Exposure of pancreatic beta cells to cytokines released by islet-infiltrating immune cells induces alterations in gene expression, leading to impaired insulin secretion and apoptosis in the initial phases of type 1 diabetes. Long non-coding RNAs (lncRNAs) are a new class of transcripts participating in the development of many diseases. As little is known about their role in insulin-secreting cells, this study aimed to evaluate their contribution to beta cell dysfunction. METHODS: The expression of lncRNAs was determined by microarray in the MIN6 beta cell line exposed to proinflammatory cytokines. The changes induced by cytokines were further assessed by real-time PCR in islets of control and NOD mice. The involvement of selected lncRNAs modified by cytokines was assessed after their overexpression in MIN6 cells and primary islet cells. RESULTS: MIN6 cells were found to express a large number of lncRNAs, many of which were modified by cytokine treatment. The changes in the level of selected lncRNAs were confirmed in mouse islets and an increase in these lncRNAs was also seen in prediabetic NOD mice. Overexpression of these lncRNAs in MIN6 and mouse islet cells, either alone or in combination with cytokines, favoured beta cell apoptosis without affecting insulin production or secretion. Furthermore, overexpression of lncRNA-1 promoted nuclear translocation of nuclear factor of κ light polypeptide gene enhancer in B cells 1 (NF-κB). CONCLUSIONS/INTERPRETATION: Our study shows that lncRNAs are modulated during the development of type 1 diabetes in NOD mice, and that their overexpression sensitises beta cells to apoptosis, probably contributing to their failure during the initial phases of the disease.
Resumo:
Nonobese diabetic (NOD) mice and a derived strain, NOD.H.2h4, have been used as a model for experimental spontaneous thyroiditis and thyroiditis induced by iodide excess after a goiter-inducing period. Some authors have proposed that iodide, given after methimazole or propylthiouracil, is capable of inducing apoptosis in thyroid cells and that anti-thyroid drugs can modulate the expression of apoptosis components such as Fas and its ligand (Fas-L). Here we evaluated the effect of potassium iodide (20 µg/animal for 4 days, ip) given to NOD mice at the 10th week of life after exposure to methimazole (1 mg/ml) in drinking water from the 4th to the 10th week of life. Fas, Fas-L and Bcl-w expression were analyzed semiquantitatively by RT-PCR immediately after potassium iodide administration (group MI44D) or at week 32 (MI32S). Control groups were added at 10 (C10) and 32 weeks (C32), as well as a group that received only methimazole (CM10). An increase in the expression of Fas-L and Bcl-w (P<0.01, ANOVA) was observed in animals of group MI44D, while Fas was expressed at higher levels (P = 0.02) in group C32 (72.89 ± 47.09 arbitrary units) when compared to group C10 (10.8 ± 8.55 arbitrary units). Thus, the analysis of Fas-L and Bcl-w expression in the MI44D group and Fas in group C32 allowed us to detect two different patterns of expression of these apoptosis components in thyroid tissue of NOD mice.
Resumo:
Insulin-dependent diabetes mellitus is caused by autoimmune destruction of pancreatic ß cells. Non-obese diabetic (NOD) mice spontaneously develop diabetes similar to the human disease. Cytokines produced by islet-infiltrating mononuclear cells may be directly cytotoxic and can be involved in islet destruction coordinated by CD4+ and CD8+ cells. We utilized a semiquantitative RT-PCR assay to analyze in vitro the mRNA expression of TNF-alpha and IFN-gamma cytokine genes in isolated islets (N = 100) and spleen cells (5 x 10(5) cells) from female NOD mice during the development of diabetes and from female CBA-j mice as a related control strain that does not develop diabetes. Cytokine mRNAs were measured at 2, 4, 8, 14 and 28 weeks of age from the onset of insulitis to the development of overt diabetes. An increase in IFN-gamma expression in islets was observed for females aged 28 weeks (149 ± 29 arbitrary units (AU), P<0.05, Student t-test) with advanced destructive insulitis when compared with CBA-j mice, while TNF-alpha was expressed in both NOD and CBA-j female islets at the same level at all ages studied. In contrast, TNF-alpha in spleen was expressed at higher levels in NOD females at 14 weeks (99 ± 8 AU, P<0.05) and 28 weeks (144 ± 17 AU, P<0.05) of age when compared to CBA-j mice. The data suggest that IFN-gamma and TNF-alpha expression in pancreatic islets of female NOD mice is associated with ß cell destruction and overt diabetes.
Resumo:
Diabetes mellitus can lead to reproductive disorders that in turn result in weakened fertility brought about by morphofunctional changes in the testes and accessory sex glands. However, doubts persist concerning the basic biology of the secretory epithelial cells and the stroma of the coagulating gland of diabetic mice. Thus, the objective of the present study was to analyze the histological and ultrastructural changes associated with stereology of the coagulating gland of mice with alloxan-induced diabetes, and of spontaneously diabetic mice. Sixteen mice of the C57BL/6J strain, and eight non-obese diabetic (NOD) mice were used. The animals were divided into three groups: 1) control (C), 2) alloxan diabetic (AD), and 3) NOD. Thirty days after the detection of diabetic status in group 2, all of the animals were killed and then perfused with Karnovsky's solution through the left cardiac ventricle. The coagulating gland was then removed and processed for morphometric study by light microscopy and electron microscopy. The results showed thickening of the stroma, atrophy of secretory epithelial cells, and disorganization of the organelles involved in the secretory process in both NOD and alloxan-induced mice. Thus, it may be concluded that the coagulating gland suffered drastic morphological changes, and consequently impaired glandular function, in the presence of diabetes mellitus type I in both NOD and AD mice. (C) 2003 Wiley-Liss, Inc.
Resumo:
Altered activity of retinal endothelin-1 (ET-1) and nitric oxide may play a causal role in the hemodynamic and histopathological changes of diabetic retinopathy. This study evaluated the therapeutic potential of long-term selective blockade of the ET-1(A) receptor (ETRA) to prevent the development of retinopathy in a genetic mouse model of nonobese type 1 diabetes (NOD). Mice with NOD that received subcutaneous implantation of insulin pellets and wild-type control mice were treated for 4 months with the selective ETRA antagonist LU208075 (30 mg/kg/day) via drinking water. At the end of the study, blood glucose levels were evaluated, and animals were anesthetized and perfused intracardially with FITC-labeled dextran. Retinas were removed and either fixed in formalin for confocal microscope evaluation of retinal vascular filling or transferred to RNALater for quantitative reverse transcriptase-polymerase chain reaction to evaluate expression of NOS-3, NOS-1, ET-1, ETRA, ETRB, and the angiogenic factor adrenomedullin. Compared with wild-type controls, expression of ET-1, ETRA, ETRB, and adrenomedullin in mice with NOD were markedly upregulated in the retinas of nontreated mice (cycle time values relative to GAPDH [deltaCt], 14.8 vs. 13.7, 18.57 vs. 17.5, 10.76 vs. 9.9, and 11.7 vs. 9.1, respectively). Mean integral fluorescence intensity (MIFI) of retinal vascular filling was reduced from normal values of 24 to 12.5 in nontreated animals. LU208075 treatment normalized the upregulated expression of ET-1 and adrenomedullin, as well as the deficit in MIFI, but did not affect the increased ETRA and ETRB expression or the elevated plasma glucose levels found in nontreated animals. NOS isoform expression was essentially unchanged. ETRA antagonists may provide a novel therapeutic strategy to slow or prevent progression of retinal microvascular damage and proliferation in patients for whom there is clear evidence of activation of the ET-1 system.
Resumo:
Lower levels of cytosine methylation have been found in the liver cell DNA from non-obese diabetic (NOD) mice under hyperglycemic conditions. Because the Fourier transform-infrared (FT-IR) profiles of dry DNA samples are differently affected by DNA base composition, single-stranded form and histone binding, it is expected that the methylation status in the DNA could also affect its FT-IR profile. The DNA FT-IR signatures obtained from the liver cell nuclei of hyperglycemic and normoglycemic NOD mice of the same age were compared. Dried DNA samples were examined in an IR microspectroscope equipped with an all-reflecting objective (ARO) and adequate software. Changes in DNA cytosine methylation levels induced by hyperglycemia in mouse liver cells produced changes in the respective DNA FT-IR profiles, revealing modifications to the vibrational intensities and frequencies of several chemical markers, including νas -CH3 stretching vibrations in the 5-methylcytosine methyl group. A smaller band area reflecting lower energy absorbed in the DNA was found in the hyperglycemic mice and assumed to be related to the lower levels of -CH3 groups. Other spectral differences were found at 1700-1500 cm(-1) and in the fingerprint region, and a slight change in the DNA conformation at the lower DNA methylation levels was suggested for the hyperglycemic mice. The changes that affect cytosine methylation levels certainly affect the DNA-protein interactions and, consequently, gene expression in liver cells from the hyperglycemic NOD mice.