902 resultados para NOCTURNAL RODENTS
Resumo:
Pineal melatonin release exhibits a circadian rhythm with a tight nocturnal pattern. Melatonin synthesis is regulated by the master circadian clock within the hypothalamic suprachiasmatic nucleus (SCN) and is also directly inhibited by light. The SCN is necessary for both circadian regulation and light inhibition of melatonin synthesis and thus it has been difficult to isolate these two regulatory limbs to define the output pathways by which the SCN conveys circadian and light phase information to the pineal. A 22-h light-dark (LD) cycle forced desynchrony protocol leads to the stable dissociation of rhythmic clock gene expression within the ventrolateral SCN (vlSCN) and the dorsomedial SCN (dmSCN). In the present study, we have used this protocol to assess the pattern of melatonin release under forced desynchronization of these SCN subregions. In light of our reported patterns of clock gene expression in the forced desynchronized rat, we propose that the vlSCN oscillator entrains to the 22-h LD cycle whereas the dmSCN shows relative coordination to the light-entrained vlSCN, and that this dual-oscillator configuration accounts for the pattern of melatonin release. We present a simple mathematical model in which the relative coordination of a single oscillator within the dmSCN to a single light-entrained oscillator within the vlSCN faithfully portrays the circadian phase, duration and amplitude of melatonin release under forced desynchronization. Our results underscore the importance of the SCN`s subregional organization to both photic input processing and rhythmic output control.
Resumo:
Circadian rhythms are regarded as essentially ubiquitous features of animal behavior and are thought to confer important adaptive advantages. However, although circadian systems of rodents have been among the most extensively studied, most comparative biology is restricted to a few related species. In this study, the circadian organization of locomotor activity was studied in the subterranean, solitary north Argentinean rodent, Ctenomys knightii. The genus, Ctenomys, commonly known as Tuco-tucos, comprises more than 50 known species over a range that extends from 12S latitude into Patagonia, and includes at least one social species. The genus, therefore, is ideal for comparative and ecological studies of circadian rhythms. Ctenomys knightii is the first of these to be studied for its circadian behavior. All animals were wild caught but adapted quickly to laboratory conditions, with clear and precise activity-rest rhythms in a light-dark (LD) cycle and strongly nocturnal wheel running behavior. In constant dark (DD), the rhythm expression persisted with free-running periods always longer than 24h. Upon reinstatement of the LD cycle, rhythms resynchronized rapidly with large phase advances in 7/8 animals. In constant light (LL), six animals had free-running periods shorter than in DD, and 4/8 showed evidence of splitting. We conclude that under laboratory conditions, in wheel-running cages, this species shows a clear nocturnal rhythmic organization controlled by an endogenous circadian oscillator that is entrained to 24h LD cycles, predominantly by light-induced advances, and shows the same interindividual variable responses to constant light as reported in other non-subterranean species. These data are the first step toward understanding the chronobiology of the largest genus of subterranean rodents.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Octodon degus is a rodent with diurnal crepuscular activity. Here we compare the function and morphology of the retina of this diurnal rodent with the retinas of nocturnal rodents and humans.
Resumo:
At the centre of this research is an ethnographic study that saw the researcher embedded within the fabric of inner city life to better understand what characteristics of user activity and interaction could be enhanced by technology. The initial research indicated that the experience of traversing the city after dark unified an otherwise divergent user group through a shared concern for personal safety. Managing this fear and danger represented an important user need. We found that mobile social networking systems are not only integral for bringing people together, they can help in the process of users safely dispersing as well. We conclude, however, that at a time when the average iPhone staggers under the weight of a plethora of apps that do everything from acting as a carpenter’s level to a pregnancy predictor, we consider the potential for the functionality of a personal safety device to be embodied within a stand alone artifact.
Resumo:
The decline of large coevolved frugivorous species within fragmented habitats can have an effect on ecological processes, for example, seed dispersal and germination. It is therefore necessary for more resilient species to ensure essential processes are maintained within the system. This study investigates the influence of two rodent species, Melomys cervinipes (Fawn-footed Melomys) and Rattus fuscipes (Bush Rat), on the germination process of rainforest fruits. Both species are endemic to north Queensland rainforest and commonly found in fragmented habitats in high densities. We found in 85% of fruit species tested, rodent feeding increased seed germination rate by a factor of 3.5. Our results suggest that rodents can play a significant role in enhancing germination rates of fruits in the tropical rainforest of far north Queensland.
Resumo:
Severely reduced fertility is a common finding in cystic fibrosis (CF). We used in situ hybridization to examine the cell-specific expression of CFTR in the reproductive organs of rodents. In males CFTR mRNA is found in the round spermatids (spermatogenic stages V-X) and in the principal cells that line the initial segment of the epididymis. In both the testis and the epididymis, CFTR expression is developmentally regulated suggesting that the defect in the genital tract of male CF patients is of developmental origin. CFTR expression in the luminal and glandular epithelium of the uterus is regulated during the oestrous cycle and is maximal at pro-oestrus. Our results provide a biological rationale for the reduced fertility of CF patients, and suggest a possible cause for the comparatively poorer prognosis for women with CF.
Resumo:
To date, research into the biological processes and molecular mechanisms associated with endometrial receptivity and embryo implantation has been a focus of attention, whereas the complex events that occur in the human endometrium during the menstrual and proliferative phase under the influence of estrogen have received little attention. The objective of this review is to provide an update of our current understanding of the actions of estrogen on both human and rodent endometrium, with special emphasis on the regulation of uterine growth and cell proliferation, and the value of global gene expression analysis, in increasing understanding of these processes.
Resumo:
Kiwi (Apteryx spp.) have a visual system unlike that of other nocturnal birds, and have specializations to their auditory, olfactory and tactile systems. Eye size, binocular visual fields and visual brain centers in kiwi are proportionally the smallest yet recorded among birds. Given the many unique features of the kiwi visual system, we examined the laminar organization of the kiwi retina to determine if they evolved increased light sensitivity with a shift to a nocturnal niche or if they retained features of their diurnal ancestor. The laminar organization of the kiwi retina was consistent with an ability to detect low light levels similar to that of other nocturnal species. In particular, the retina appeared to have a high proportion of rod photoreceptors compared to diurnal species, as evidenced by a thick outer nuclear layer, and also numerous thin photoreceptor segments intercalated among the conical shaped cone photoreceptor inner segments. Therefore, the retinal structure of kiwi was consistent with increased light sensitivity, although other features of the visual system, such as eye size, suggest a reduced reliance on vision. The unique combination of a nocturnal retina and smaller than expected eye size, binocular visual fields and brain regions make the kiwi visual system unlike that of any bird examined to date. Whether these features of their visual system are an evolutionary design that meets their specific visual needs or are a remnant of a kiwi ancestor that relied more heavily on vision is yet to be determined.
Resumo:
Background In vision, there is a trade-off between sensitivity and resolution, and any eye which maximises information gain at low light levels needs to be large. This imposes exacting constraints upon vision in nocturnal flying birds. Eyes are essentially heavy, fluid-filled chambers, and in flying birds their increased size is countered by selection for both reduced body mass and the distribution of mass towards the body core. Freed from these mass constraints, it would be predicted that in flightless birds nocturnality should favour the evolution of large eyes and reliance upon visual cues for the guidance of activity. Methodology/Principal Findings We show that in Kiwi (Apterygidae), flightlessness and nocturnality have, in fact, resulted in the opposite outcome. Kiwi show minimal reliance upon vision indicated by eye structure, visual field topography, and brain structures, and increased reliance upon tactile and olfactory information. Conclusions/Significance This lack of reliance upon vision and increased reliance upon tactile and olfactory information in Kiwi is markedly similar to the situation in nocturnal mammals that exploit the forest floor. That Kiwi and mammals evolved to exploit these habitats quite independently provides evidence for convergent evolution in their sensory capacities that are tuned to a common set of perceptual challenges found in forest floor habitats at night and which cannot be met by the vertebrate visual system. We propose that the Kiwi visual system has undergone adaptive regressive evolution driven by the trade-off between the relatively low rate of gain of visual information that is possible at low light levels, and the metabolic costs of extracting that information.
Resumo:
Temporal and environmental variation in vocal activity can provide information on avian behaviour and call function not available to short-term experimental studies. Intersexual differences in this variation can provide insight into selection effects. Yet factors influencing vocal behaviour have not been assessed in many birds, even those monitored by acoustic methods. This applies to the New Zealand kiwi (Apterygidae), for which call censuses are used extensively in conservation monitoring, yet which have poorly understood acoustic ecology. We investigated little spotted kiwi Apteryx owenii vocal behaviour over 3 yr, measuring influences on vocal activity in both sexes from time of night, season, weather conditions and lunar cycle. We tested hypotheses that call rate variation reflects call function, foraging efficiency, historic predation risk and variability in sound transmission, and that there are inter-sexual differences in call function. Significant seasonal variation showed that vocalisations were important in kiwi reproduction, and inter-sexual synchronisation of call rates indicated that contact, pair-bonding or resource defence were key functions. All weather variables significantly affected call rates, with elevated calling during increased humidity and ground moisture indicating a relation between vocal activity and foraging conditions. A significant decrease in calling activity on cloudy nights, combined with no moonlight effect, suggests an impact of light pollution in this species. These influences on vocal activity provide insight into kiwi call function, have direct consequences for conservation monitoring of kiwi, and have wider implications in understanding vocal behaviour in a range of nocturnal birds
Resumo:
Adult male bonnet monkeys exhibit nychthemeral rhythms in testosterone (T) secretion but the precise role of this heightened level of T secretion in regulating spermatogenesis is not known. Intranasal administration of microdoses (500 mu g or 250 mu g/day) of Norethisterone (IN-NET) to adult monkeys (n = 6) at 1600 h each day selectively and completely suppressed the nocturnal surge levels of serum T. Concomitant with this was a significant reduction (P<0.01) in serum LH but not FSH levels. DNA flow cytometric analysis of testicular biopsy tissue showed by week 10 of IN-NET treatment an arrest in meiotic transformation of primary spermatocytes (4C) to round/elongate (1C/HC) spermatids and by week 20 there was a complete absence of 4C, 1C and HC cells (with a relative accumulation in 2C cells). The accumulated meiotic (4C) cells at week 10 showed an increase (>80%, P<0.01) in coefficient of variation and a decrease in intensity of DNA-bound ethidium bromide fluorescence, parameters characteristic of degenerating 'apoptotic' subpopulation of germ cells. While two monkeys exhibited acute oligozoospermia 4 became azoospermic by 20 weeks of IN-NET treatment. A complete, qualitative reversal in the regressive changes in spermatogenesis and near-normal sperm output were apparent at the end of a 20-week recovery phase. These data demonstrate that prolonged, selective suppression of nocturnal surge levels of serum T secretion exerts a primary effect on meiosis in spermatogenesis leading to oligo/azoospermic status in adult bonnet monkeys.
Resumo:
Wongabel, a northeastern Queensland tropical, wet, evergreen forest, contains 22 species of Scarabaeinae dung beetles. Five of these species were observed to perch commonly on leaves at night. Length of the beetle and the height of its perch were recorded for each of 56 1 specimens. Unlike the New World tropical dung beetle perchers, no clear evidence was found that small species perched closer to the ground than larger species. The evidence gathered, at least for the four most common perchers, supports the hypothesis that perching is one type of foraging strategy. The similarities and differences between the Australian and New World perchers are discussed.
Resumo:
Most bees are diurnal, with behaviour that is largely visually mediated, but several groups have made evolutionary shifts to nocturnality, despite having apposition compound eyes unsuited to vision in dim light. We compared the anatomy and optics of the apposition eyes and the ocelli of the nocturnal carpenter bee, Xylocopa tranquebarica, with two sympatric species, the strictly diurnal X. leucothorax and the occasionally crepuscular X. tenuiscapa. The ocelli of the nocturnal X. tranquebarica are unusually large (diameter ca. 1 mm) and poorly focussed. Moreover, their apposition eyes show specific visual adaptations for vision in dim light, including large size, large facets and very wide rhabdoms, which together make these eyes 9 times more sensitive than those of X. tenuiscapa and 27 times more sensitive than those of X. leucothorax. These differences in optical sensitivity are surprisingly small considering that X. tranquebarica can fly on moonless nights when background luminance is as low as 10(-5) cd m(-2), implying that this bee must employ additional visual strategies to forage and find its way back to the nest. These strategies may include photoreceptors with longer integration times and higher contrast gains as well as higher neural summation mechanisms for increasing visual reliability in dim light.